
Chapter 3

Programmer's Manual

This chapter provides an in depth description of the AmiTCP/IP application program-

ming interface. Following sections introduce the socket model of communication (3.1)

and the bsdsocket.library function calls implementing the socket abstraction. Some use-

ful supporting routines are described in section 3.2. The client/server model is introduced

in section 3.3. Some more advanced topics are discussed in section 3.4. Section 3.5 sum-

marizes the small di�erences between AmiTCP/IP and 4.3BSD socket APIs. The full

function reference of the AmiTCP/IP API functions is in appendix B starting from page

140.

The text in sections 3.1 { 3.4 is based on the [Le�er et al 1991a].

3.1 Socket Concepts

The basic building block for communication is the socket. A socket is an endpoint of

communication to which a name may be bound. Each socket in use has a type and

one or more associated processes. Sockets exist within communication domains. A com-

munication domain is an abstraction introduced to bundle common properties of pro-

cesses communicating through sockets. One such property is the scheme used to name

sockets. Sockets normally exchange data only with sockets in the same domain

1

. The

AmiTCP/IP system supports currently only one communication domain: the Internet

domain, which is used by processes which communicate using the the DARPA standard

communication protocols. The underlying communication facilities provided by the do-

mains have a signi�cant inuence on the internal system implementation as well as the

interface to socket facilities available to a user.

3.1.1 Socket Types

Sockets are typed according to the communication properties visible to a user. Processes

are presumed to communicate only between sockets of the same type, although there

1

It may be possible to cross domain boundaries, but only if some translation process is performed.

29

30 Section 3.1 AmiTCP/IP System Manual

is nothing that prevents communication between sockets of di�erent types should the

underlying communication protocols support this.

Three types of sockets currently are available to a user. A stream socket provides

for the bidirectional, reliable, sequenced, and unduplicated ow of data without record

boundaries. Aside from the bidirectionality of data ow, a pair of connected stream

sockets provides an interface nearly identical to that of pipes.

2

A datagram socket supports bidirectional ow of data which is not promised to be

sequenced, reliable, or unduplicated. That is, a process receiving messages on a datagram

socket may �nd messages duplicated, and, possibly, in an order di�erent from the order

in which it was sent. An important characteristic of a datagram socket is that record

boundaries in data are preserved. Datagram sockets closely model the facilities found in

many contemporary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which

support socket abstractions. These sockets are normally datagram oriented, though their

exact characteristics are dependent on the interface provided by the protocol. Raw sockets

are not intended for the general user; they have been provided mainly for those interested

in developing new communication protocols, or for gaining access to some of the more

esoteric facilities of an existing protocol. The use of raw sockets is considered in section

3.4.

Another potential socket type which has interesting properties is the reliably deliv-

ered message socket. The reliably delivered message socket has similar properties to a

datagram socket, but with reliable delivery. There is currently no support for this type

of socket, but a reliably delivered message protocol similar to Xerox's Packet Exchange

Protocol (PEX) may be simulated at the user level. More information on this topic can

be found in section 3.4.

3.1.2 Using The Socket Library

As any other Amiga shared library the bsdsocket.library must be opened to be able to

access the functions in the library. This can be done with Exec's OpenLibrary() call. The

call returns a library base pointer which is task spec�c, which means that each separate

task (or process) must open the library itself. This is because the AmiTCP/IP stores

task speci�c information to the library base structure.

The library base pointer returned by the OpenLibrary() must be stored in to a

variable accessable from the program (usually global) named SocketBase. Example of

opening the library follows:

#include <exec/libraries.h>

...

struct Library *SocketBase = NULL;

2

In the UNIX systems pipes have been implemented internally as simply a pair of connected stream

sockets.

System Manual AmiTCP/IP Section 3.1 31

...

if ((SocketBase = OpenLibrary("bsdsocket.library", 2)) == NULL) {

/* could not open the library */

...

}

else {

/* SocketBase now points to socket base of this task */

...

}

Note that the library version argument of the OpenLibrary() call is given as 2, which

means that at least version 2 is needed. This is the minimum version which should be

requested, since the version 1 is incompatible with the version 2 and up. If the application

uses features de�ned for some speci�c version (and up), a later version number should be

speci�ed.

After the application is done with sockets the library must be closed. This is done

with CloseLibrary() as follows:

if (SocketBase) {

CloseLibrary(SocketBase);

SocketBase = NULL;

}

Note that if the application in question is multithreaded, each task (or process) need

to open/close its own library base. The base opened by the net.lib may be used by the

original task only!

Many programs expect the error values of the socket calls to be placed in a global

variable named errno. By default a shared library cannot know the address (nor size) of

the applications variables, however. There are two remedies to this:

1. Use function Errno() to retrieve the error value, or

2. Tell the address and the size of the errno variable to the AmiTCP/IP by using

the SetErrnoPtr() call.

The latter method requires only one additional function call to the startup of the

application, and is thus the preferred method. The call may look like:

#include <errno.h>

#include <sys/socket.h>

...

SetErrnoPtr(&errno, sizeof(errno));

32 Section 3.1 AmiTCP/IP System Manual

All this is done automatically for the application if it is linked with the net.lib

3

. See

section 3.1.3 for more information about the net.lib and about compiling and linking the

applications.

3.1.3 Compiling and Linking The Applications

AmiTCP/IP provides standard BSD Unix header �les to be used by the applications.

Normally they are installed to a directory which is assigned to a nameNETINCLUDE:

(see section 1.1). This means that you should add theNETINCLUDE: to the compilers

search path for include �les.

The include �les are decribed briey in the following subsection:

The NETINCLUDE Header Files

bsdsocket.h This �le includes compiler speci�c prototypes and inline functions for bs-

dsocket.library. Currently supported compilers are GCC and SAS C version 6.

The prototypes for the library functions are automatically included by the include

�les when appropriate, i.e. when the prototypes where declared in the original

BSD includes. Thus the bsdsocket.h is included by sys/socket.h, netdb.h and

arpa/inet.h.

For other compilers only C prototypes are included, so stub routines should be used

to call the functions.

errno.h Replacement for the errno.h included in the standard C-compiler headers. This

includes the �le sys/errno.h, which de�nes symbolic constants for the error values

returned by socket library calls. This �le is BSD compatible and may well replace

�le provided by the SAS/C 6.

netdb.h Contains de�nitions and prototypes for the network database functions, such

as the gethostbyname().

Standard BSD System Headers

sys/errno.h Error code de�nitions for system functions.

sys/ioctl.h De�nitions for socket IO control.

sys/param.h General machine independent parameter de�nitions.

sys/socket.h De�nitions related to sockets: types, address families, options and

prototypes.

sys/syslog.h De�nations for system logging facilities.

sys/time.h De�nition of structure timeval.

3

The net.lib is compiler dependent and is currently de�ned for SASC 6 only. The actual name of the

library varies and depends on the compiler options used.

System Manual AmiTCP/IP Section 3.1 33

sys/types.h Common C type de�nitions and �le descriptor set macros for

select().

Internet Related Headers

arpa/inet.h Inet library function prototypes (inet addr() etc.). Included for

compatibility and only includes other include �les.

netinet/in.h Protocol numbers, port conventions, inet address de�nitions.

netinet/in systm.h Some network byte order type de�nitions.

netinet/ip.h IP packet header, packet options, timestamp.

netinet/ip icmp.h ICMP packet structure.

netinet/ip var.h De�nes IP statistics, external IP packet header, reassemble

queues structures.

netinet/tcp.h De�nes the TCP packet structure.

netinet/udp.h De�nes the UDP packet structure.

Network Related Headers

net/if.h De�nes the interface for network adapter drivers.

net/if arp.h General protocol independent ARP structures.

net/route.h Routing ioctl de�nitions.

net/sana2errno.h Sana-II related error de�nitions.

net/sana2tags.h Tag de�nitions for con�guring the Sana-II software network in-

terface.

Inetd Support

inetd.h Internet daemon interface de�nitions.

inetdlib.h Internet daemon library de�nitions.

Prototypes

clib/socket inlines.h Inline function de�nitions for those BSD socket API func-

tions, which are not implemented strictly like originals by bsdsocket.library.

clib/socket protos.h bsdsocket.library function call prototypes.

SAS/C Pragmas

pragmas/socket pragmas.h SAS/C pragma library calls for bsdsocket.library.

SAS/C Proto -�le

34 Section 3.1 AmiTCP/IP System Manual

proto/socket.h Include �le normally included by the SAS/C programs. De�nes

the socket base variable and includes the �les clib/socket protos.h and

pragmas/socket pragmas.h.

GCC Inline Functions

inline/socket.h GCC inline functions for the bsdsocket.library functions.

Function Description File

fd/socket lib.fd Standard fd-�le which speci�es in which registers the arguments

to the bsdsocket.library functions are passed. This �le can be used to obtain

information needed to call the bsdsocket.library functions by the assembler

programs.

Sana-II Header Files

devices/sana2.h De�nitions for the Sana-II network device driver interface.

devices/sana2specialstats.h Special statistics de�nitions for the Sana-II.

Miscellaneous

charread.h Macro package to do bu�ered byte-by-byte reading from a socket.

lineread.h De�nitions for bu�ered line oriented reading from a socket.

Linking With net.lib

AmiTCP/IP distribution includes a link library named net.lib to be used by the appli-

cations. It is normally located in the directory which has an assigned name NETLIB:.

The library contains compiler dependent code which makes the library itself compiler

dependent. Currently only SASC version 6 is supported

4

.

net.lib features automatic initialization and termination functions which open and

close the bsdsocket.library for the application. Using this feature it is possible to compile

some typical BSD Unix socket based applications with AmiTCP/IP without any mod-

i�cations to the original source code. Note that this base may be used by the process

starting the program, i.e. the one that executes the main(). This applies to the included

utility functions which call the socket library, too.

The library also de�nes new array of error names to be used by perror() library

function. This is done because the error name array normally used by Amiga C compil-

ers does not contain enough error entries, resulting perror() to print "Unknown error

code" if some socket error is passed. Note that for perror() to work the error value must

4

But since the source for the library is provided, it can be used with any C compiler.

System Manual AmiTCP/IP Section 3.1 35

be placed into the global errno variable. This is accomplished by the SetErrnoPrt()

call made in the automatic initialization function.

For the library functions to take e�ect, the library must be speci�ed before the C

compiler own libraries in the link command line.

3.1.4 Socket Creation

To create a socket the socket() system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the speci�ed domain and of the

speci�ed type. A particular protocol may also be requested. If the protocol is left

unspeci�ed (a value of 0), the system will select an appropriate protocol from those

protocols which comprise the communication domain and which may be used to support

the requested socket type. The user is returned a descriptor (a small integer number)

which may be used in later system calls which operate on sockets. The domain is speci�ed

as one of the manifest constants de�ned in the �le sys/socket.h. For the Internet

domain the constant is AF INET

5

. The socket types are also de�ned in this �le and one of

SOCK STREAM, SOCK DGRAM or SOCK RAW must be speci�ed. To create a stream socket in

the Internet domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing

the underlying communication support. To create a datagram socket the call might be:

s = socket(AF_INET, SOCK_DGRAM, 0);

The default protocol (used when the protocol argument to the socket() call is 0)

should be correct for most every situation. However, it is possible to specify a protocol

other than the default; this will be covered in section 3.4.

There are several reasons a socket() call may fail. Aside from the rare occurrence

of lack of memory (ENOBUFS), a socket request may fail due to a request for an unknown

protocol (EPROTONOSUPPORT), or a request for a type of socket for which there is no

supporting protocol (EPROTOTYPE).

3.1.5 Binding Local Names

A socket is created without a name. Until a name is bound to a socket, processes have no

way to reference it and, consequently, no messages may be received on it. Communicating

processes are bound by an association. In the Internet domain, an association is composed

5

The manifest constants are named AF whatever as they indicate the \address format" to use in

interpreting names.

36 Section 3.1 AmiTCP/IP System Manual

of local and foreign addresses, and local and foreign ports, In most domains, associations

must be unique. In the Internet domain there may never be duplicate <protocol, local

address, local port, foreign address, foreign port> tuples.

The bind() system call allows a process to specify half of an association, <local

address, local port>, while the connect() and accept() calls are used to complete a

socket's association.

In the Internet domain, binding names to sockets can be fairly complex. Fortunately,

it is usually not necessary to speci�cally bind an address and port number to a socket,

because the connect() and send() calls will automatically bind an appropriate address

if they are used with an unbound socket.

The bind() system call is used as follows:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting

protocol(s). Its interpretation may vary from communication domain to communication

domain (this is one of the properties which comprise the domain). As mentioned, in the

Internet domain names contain an Internet address and port number.

In binding an Internet address things are a little complicated:

#include <sys/types.h>

#include <netinet/in.h>

...

struct sockaddr_in sin;

...

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The selection of what to place in the address sin requires some discussion. We will come

back to the problem of formulating Internet addresses in section 3.2 when the library

routines used in name resolution are discussed.

3.1.6 Connection Establishment

Connection establishment is asymmetric, with one process a \client" and the other a

\server". The server, when willing to o�er its advertised services, binds a socket to a

well{known address associated with the service and then passively \listens" on its socket.

It is then possible for an unrelated process to rendezvous with the server. The client

requests services from the server by initiating a \connection" to the server's socket. On

the client side the connect() call is used to initiate a connection. Using the Internet

domain, this might apper as:

struct sockaddr_in server;

...

connect(s, (struct sockaddr *)&server, sizeof (server));

System Manual AmiTCP/IP Section 3.1 37

where server in the example above would contain Internet address and port number

of the server to which the client process wishes to speak. If the client process's socket is

unbound at the time of the connect call, the system will automatically select and bind a

name to the socket if necessary. This is the usual way that local addresses are bound to

a socket.

An error is returned if the connection was unsuccessful (any name automatically bound

by the system, however, remains). Otherwise, the socket is associated with the server and

data transfer may begin. Some of the more common errors returned when a connection

attempt fails are:

ETIMEDOUTAfter failing to establish a connection for a period of time, the system decided

there was no point in retrying the connection attempt any more. This usually occurs

because the destination host is down, or because problems in the network resulted

in transmissions being lost.

ECONNREFUSED The host refused service for some reason. This is usually due to a server

process not being present at the requested name.

ENETDOWN or EHOSTDOWN These operational errors are returned based on status informa-

tion delivered to the client host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH These operational errors can occur either because the

network or host is unknown (no route to the network or host is present), or because

of status information returned by intermediate gateways or switching nodes. Many

times the status returned is not su�cient to distinguish a network being down

from a host being down, in which case the system indicates the entire network is

unreachable.

For the server to receive a client's connection it must perform two steps after binding

its socket. The �rst is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to the listen() call speci�es the maximumnumber of outstanding

connections which may be queued awaiting acceptance by the server process; this number

may be limited by the system. Should a connection be requested while the queue is full,

the connection will not be refused, but rather the individual messages which comprise

the request will be ignored. This gives a harried server time to make room in its pending

connection queue while the client retries the connection request. Had the connection

been returned with the ECONNREFUSED error, the client would be unable to tell if the

server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,

though this is unlikely. The backlog �gure supplied with the listen call is currently limited

by the system to a maximum of 5 pending connections on any one queue. This avoids

the problem of processes hogging system resources by setting an in�nite backlog, then

ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

38 Section 3.1 AmiTCP/IP System Manual

struct sockaddr_in from;

...

fromlen = sizeof (from);

newsock = accept(s, (struct sockaddr *)&from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the

server wishes to �nd out who its client is, it may supply a bu�er for the client socket's

name. The value{result parameter fromlen is initialized by the server to indicate how

much space is associated with from, then modi�ed on return to reect the true size of

the name. If the client's name is not of interest, the second parameter may be a NULL

pointer.

accept() normally blocks. That is, accept() will not return until a connection is

available or the system call is interrupted by a signal

6

to the process. Further, there is no

way for a process to indicate it will accept connections from only a speci�c individual, or

individuals. It is up to the user process to consider who the connection is from and close

down the connection if it does not wish to speak to the process. If the server process

wants to accept connections on more than one socket, or wants to avoid blocking on the

accept call, there are alternatives; they will be considered in section 3.4.

3.1.7 Data Transfer

With a connection established, data may begin to ow. To send and receive data there

are a number of possible calls. With the peer entity at each end of a connection anchored,

a user can send or receive a message without specifying the peer. The calls send() and

recv() may be used:

send(s, buf, sizeof (buf), flags);

recv(s, buf, sizeof (buf), flags);

While send() and recv() are virtually identical to the standard I/O routines, the extra

flags argument is important. The ags, de�ned in sys/socket.h, may be speci�ed as a

non{zero value if one or more of the following is required:

MSG OOB Send/receive out of band data.

MSG PEEK Look at data without reading.

MSG DONTROUTE Send data without routing packets.

Out of band data is a notion speci�c to stream sockets, and one which we will not

immediately consider. The option to have data sent without routing applied to the

outgoing packets is currently used only by the routing table management process, and

6

By default, the CTRL-C signal interrupts the system calls, but the application may change this,

however.

System Manual AmiTCP/IP Section 3.1 39

is unlikely to be of interest to the casual user. The ability to preview data is, however,

of interest. When MSG PEEK is speci�ed with a recv() call, any data present is returned

to the user, but treated as still \unread". That is, the next recv() call applied to the

socket will return the data previously previewed.

3.1.8 Discarding Sockets

Once a socket is no longer of interest, it may be discarded by applying a CloseSocket()

to the descriptor,

CloseSocket(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket)

when a close takes place, the system will continue to attempt to transfer the data. How-

ever, after a fairly long period of time, if the data is still undelivered, it will be discarded.

Should a user have no use for any pending data, it may perform a shutdown() on the

socket prior to closing it. This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will

be sent, or 2 if no data is to be sent or received.

3.1.9 Connectionless Sockets

To this point we have been concerned mostly with sockets which follow a connection

oriented model. However, there is also support for connectionless interactions typical of

the datagram facilities found in contemporary packet switched networks. A datagram

socket provides a symmetric interface to data exchange. While processes are still likely

to be client and server, there is no requirement for connection establishment. Instead,

each message includes the destination address.

Datagram sockets are created as before. If a particular local address is needed, the

bind operation must precede the �rst data transmission. Otherwise, the system will set

the local address and/or port when data is �rst sent. To send data, the sendto() call is

used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

The s, buf, buflen, and flags parameters are used as before. The to and tolen values

are used to indicate the address of the intended recipient of the message. When using an

unreliable datagram interface, it is unlikely that any errors will be reported to the sender.

When information is present locally to recognize a message that can not be delivered (for

instance when a network is unreachable), the call will return -1 and the global value

errno will contain an error number (See section 3.1.2 for discussion about errno).

To receive messages on an unconnected datagram socket, the recvfrom() call is pro-

vided:

40 Section 3.1 AmiTCP/IP System Manual

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, the fromlen parameter is handled in a value{result fashion, initially contain-

ing the size of the from bu�er, and modi�ed on return to indicate the actual size of the

address from which the datagram was received.

In addition to the two calls mentioned above, datagram sockets may also use the

connect() call to associate a socket with a speci�c destination address. In this case, any

data sent on the socket will automatically be addressed to the connected peer, and only

data received from that peer will be delivered to the user. Only one connected address

is permitted for each socket at one time; a second connect() will change the destination

address, and a connect() to a null address (family AF UNSPEC) will disconnect. Connect

requests on datagram sockets return immediately, as this simply results in the system

recording the peer's address (as compared to a stream socket, where a connect request

initiates establishment of an end to end connection). accept() and listen() are not

used with datagram sockets.

While a datagram socket is connected, errors from recent send() calls may be returned

asynchronously. These errors may be reported on subsequent operations on the socket, or

a special socket option used with getsockopt(), SO ERROR, may be used to interrogate

the error status. A select() for reading or writing will return true when an error

indication has been received. The next operation will return the error, and the error

status is cleared. Other of the less important details of datagram sockets are described

in section 3.4.

3.1.10 Input/Output Multiplexing

One last facility often used in developing applications is the ability to multiplex i/o

requests among multiple sockets. This is done using the select() call. The select()

call provided by AmiTCP/IP is actually a compile time inline function (or normal stub

with compilers without inline facility) which calls the WaitSelect(). The WaitSelect()

call is similar to the normal select() call, but has one extra argument specifying a

pointer to a signal mask for the signals which should break the selection (in addition to

the timeouts and the break signal). This makes possible to use WaitSelect() instead of

normal Wait() as a driver for the applications event loop. If the pointer is given as NULL

the functionality is as with BSD select(). The inline (or stub) function for select()

actually just calls the WaitSelect() with last argument as NULL.

Here is a brief example of the usage of the WaitSelect():

#include <sys/time.h>

#include <sys/types.h>

...

fd_set readmask, writemask, exceptmask;

struct timeval timeout;

System Manual AmiTCP/IP Section 3.1 41

ULONG signalmask;

...

WaitSelect(nfds, &readmask, &writemask, &exceptmask, &timeout,

&signalmask);

WaitSelect() takes as arguments pointers to three sets, one for the set of �le descriptors

for which the caller wishes to be able to read data on, one for those descriptors to which

data is to be written, and one for which exceptional conditions are pending; out-of-band

data is the only exceptional condition currently implemented. If the user is not interested

in certain conditions (i.e., read, write, or exceptions), the corresponding argument to the

select() should be a NULL pointer.

Each set is actually a structure containing an array of long integer bit masks; the size

of the array is set by the de�nition FD SETSIZE. The array is long enough to hold one bit

for each of FD SETSIZE �le descriptors.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) have been provided for

adding and removing �le descriptor fd in the set mask. The set should be zeroed before

use, and the macro FD_ZERO(&mask) has been provided to clear the set mask. The

parameter nfds in the select() call speci�es the range of �le descriptors (i.e. one

plus the value of the largest descriptor) to be examined in a set.

A timeout value may be speci�ed if the selection is not to last more than a predeter-

mined period of time. If the �elds in timeout are set to 0, the selection takes the form of

a poll, returning immediately. If the last parameter is a NULL pointer, the selection will

block inde�nitely

7

.

The last argument is a pointer to the mask specifying signals for which the

WaitSelect() should break. WaitSelect() normally returns the number of �le descrip-

tors selected; if the WaitSelect() call returns due to the timeout expiring, then the value

0 is returned. If the WaitSelect() terminates because of an error or interruption, a -1 is

returned with the error number in errno, and with the �le descriptor masks unchanged.

The signal mask is altered on return to hold the bits for the signals which caused the

break.

Assuming a successful return, the three sets will indicate which �le descriptors are

ready to be read from, written to, or have exceptional conditions pending. The status of

a �le descriptor in a select mask may be tested with the FD_ISSET(fd, &mask) macro,

which returns a non-zero value if fd is a member of the set mask, and 0 if it is not.

To determine if there are connections waiting on a socket to be used with an accept()

call, select() can be used, followed by a FD_ISSET(fd, &mask)macro to check for read

readiness on the appropriate socket. If FD_ISSET() returns a non-zero value, indicating

permission to read, then a connection is pending on the socket.

As an example, to read data from two sockets, s1 and s2 as it is available from each

and with a one{second timeout, the following code might be used:

7

To be more speci�c, a return takes place only when a descriptor is selectable, or when a signal is

received by the caller, interrupting the system call.

42 Section 3.2 AmiTCP/IP System Manual

#include <sys/time.h>

#include <sys/types.h>

#include <sys/socket.h>

...

fd_set read_template;

struct timeval wait;

int nb;

int s1,s2;

int maxfd;

...

maxfd = s1 > s2 ? s1 : s2;

for (;;) {

wait.tv_sec = 1; /* one second */

wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);

FD_SET(s2, &read_template);

nb = select(maxfd, &read_template, NULL, NULL, &wait);

if (nb <= 0) {

/* An error occurred during the select, or

the select timed out. */

}

if (FD_ISSET(s1, &read_template)) {

/* Socket #1 is ready to be read from. */

}

if (FD_ISSET(s2, &read_template)) {

/* Socket #2 is ready to be read from. */

}

}

Note the usage of the select(), which calls WaitSelect() with NULL signal mask

pointer.

In 4.2BSD, the arguments to select() were pointers to integers instead of pointers

to fd sets. This type of call will still work as long as the number of �le descriptors being

examined is less than the number of bits in an integer; however, the methods illustrated

above should be used in all current programs.

select() provides a synchronous multiplexing scheme. Asynchronous noti�cation of

output completion, input availability, and exceptional conditions is possible through use

of the SigIO and SigURG signals described in section 3.4.

System Manual AmiTCP/IP Section 3.2 43

3.2 Network Library Routines

The discussion in section 3.1 indicated the possible need to locate and construct network

addresses when using the interprocess communication facilities in a distributed environ-

ment. To aid in this task a number of routines have been added to the Amiga shared

socket library. In this section we will consider the routines provided to manipulate net-

work addresses.

Locating a service on a remote host requires many levels of mapping before client

and server may communicate. A service is assigned a name which is intended for human

consumption; e.g. \the login server on host monet". This name, and the name of the peer

host, must then be translated into network addresses which are not necessarily suitable for

human consumption. Finally, the address must then used in locating a physical location

and route to the service. The speci�cs of these three mappings are likely to vary between

network architectures. For instance, it is desirable for a network to not require hosts to

be named in such a way that their physical location is known by the client host. Instead,

underlying services in the network may discover the actual location of the host at the

time a client host wishes to communicate. This ability to have hosts named in a location

independent manner may induce overhead in connection establishment, as a discovery

process must take place, but allows a host to be physically mobile without requiring it to

notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, net-

work names to network numbers, protocol names to protocol numbers, and service names

to port numbers and the appropriate protocol to use in communicating with the server

process. The �le netdb.h must be included when using any of these routines.

3.2.1 Host Names

An Internet host name to address mapping is represented by the hostent structure:

struct hostent {

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type (e.g., AF_INET) */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses, null terminated */

};

#define h_addr h_addr_list[0] /* first address, network byte order */

The routine gethostbyname() takes an Internet host name and returns a hostent

structure, while the routine gethostbyaddr()maps Internet host addresses into a hostent

structure.

The o�cial name of the host and its public aliases are returned by these routines, along

with the address type (family) and a null terminated list of variable length addresses. This

44 Section 3.2 AmiTCP/IP System Manual

list of addresses is required because it is possible for a host to have many addresses, all

having the same name. The h addr de�nition is provided for backward compatibility,

and is de�ned to be the �rst address in the list of addresses in the hostent structure.

The database for these calls is provided either by the con�guration �le or by use of a

name server. Because of the di�erences in these databases and their access protocols, the

information returned may di�er. When using the host table version of gethostbyname(),

only one address will be returned, but all listed aliases will be included. The name server

version may return alternate addresses, but will not provide any aliases other than one

given as argument.

3.2.2 Network Names

As for host names, routines for mapping network names to numbers, and back, are pro-

vided. These routines return a netent structure:

/*

* Assumption here is that a network number

* fits in 32 bits -- probably a poor one.

*/

struct netent {

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network number, host byte order */

};

The routines getnetbyname(), andgetnetbynumber() are the network counterparts

to the host routines described above. The routines uses data read from AmiTCP/IP

con�guration �le.

3.2.3 Protocol Names

For protocols, the protoent structure de�nes the protocol{name mapping used with the

routines getprotobyname() and getprotobynumber():

struct protoent {

char *p_name; /* official protocol name */

char **p_aliases; /* alias list */

int p_proto; /* protocol number */

};

System Manual AmiTCP/IP Section 3.2 45

3.2.4 Service Names

Information regarding services is a bit more complicated. A service is expected to reside at

a speci�c \port" and employ a particular communication protocol. This view is consistent

with the Internet domain, but inconsistent with other network architectures. Further, a

service may reside on multiple ports. If this occurs, the higher level library routines will

have to be bypassed or extended. A service mapping is described by the servent structure:

struct servent {

char *s_name; /* official service name */

char **s_aliases; /* alias list */

int s_port; /* port number, network byte order */

char *s_proto; /* protocol to use */

};

The routine getservbyname() maps service names to a servent structure by speci-

fying a service name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", NULL);

returns the service speci�cation for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routine

getservbyport() is also provided. The getservbyport() routine has an interface sim-

ilar to that provided by getservbyname(); an optional protocol name may be speci�ed

to qualify lookups.

3.2.5 Miscellaneous

With the support routines described above, an Internet application program should rarely

have to deal directly with addresses. This allows services to be developed as much as

possible in a network independent fashion. It is clear, however, that purging all network

dependencies is very di�cult. So long as the user is required to supply network addresses

when naming services and sockets there will always some network dependency in a pro-

gram. For example, the normal code included in client programs, such as the remote

login program, is as follows:

Remote Login Client Code

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>

#include <netdb.h>

46 Section 3.2 AmiTCP/IP System Manual

...

int main(int argc, char *argv[])

{

struct sockaddr_in server;

struct servent *sp;

struct hostent *hp;

int s;

...

sp = getservbyname("login", "tcp");

if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");

exit(1);

}

hp = gethostbyname(argv[1]);

if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);

exit(2);

}

bzero((char *)&server, sizeof (server));

server.sin_port = sp->s_port;

bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);

server.sin_family = hp->h_addrtype;

s = socket(AF_INET, SOCK_STREAM, 0);

if (s < 0) {

perror("rlogin: socket");

exit(3);

}

...

/* Connect does the bind() for us */

if (connect(s, (struct sockaddr *)&server, sizeof (server)) < 0) {

perror("rlogin: connect");

exit(5);

}

...

}

(This example will be considered in more detail in section 3.3.)

If we wanted to make the remote login program independent of the Internet protocols

and addressing scheme we would be forced to add a layer of routines which masked the

network dependent aspects from the mainstream login code. For the current facilities

available in the system this does not appear to be worthwhile.

System Manual AmiTCP/IP Section 3.3 47

Aside from the address-related data base routines, there are several other routines

available in the run-time library which are of interest to users. These are intended mostly

to simplify manipulation of names and addresses. The routines for manipulating variable

length byte strings and handling byte swapping of network addresses and values are

summarized below:

8

.

bcmp(s1, s2, n)

Compare byte-strings; 0 if same, not 0 otherwise.

bcopy(s1, s2, n)

Copy n bytes from s1 to s2.

bzero(base, n)

Zero-�ll n bytes starting at base.

htonl(val)

Convert 32-bit quantity from host to network byte order.

htons(val)

Convert 16-bit quantity from host to network byte order.

ntohl(val)

Convert 32-bit quantity from network to host byte order.

ntohs(val)

Convert 16-bit quantity from network to host byte order.

The byte swapping routines are provided because the operating system expects ad-

dresses to be supplied in network order. On some architectures, such as the VAX, host

byte ordering is di�erent than network byte ordering. Consequently, programs are some-

times required to byte swap quantities. The library routines which return network ad-

dresses provide them in network order so that they may simply be copied into the struc-

tures provided to the system. This implies users should encounter the byte swapping

problem only when interpreting network addresses. For example, if an Internet port is to

be printed out the following code would be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded (as on Amiga) these routines are de�ned as null macros.

8

The byte string functions are provided by the C-compiler. The byte order functions are provided as

preprocessor macros.

48 Section 3.3 AmiTCP/IP System Manual

3.3 Client/Server Model

The most commonly used paradigm in constructing distributed applications is the

client/server model. In this scheme client applications request services from a server

process. This implies an asymmetry in establishing communication between the client

and server which has been examined in section 3.1. In this section we will look more

closely at the interactions between client and server, and consider some of the problems

in developing client and server applications.

The client and server require a well known set of conventions before service may be

rendered (and accepted). This set of conventions comprises a protocol which must be

implemented at both ends of a connection. Depending on the situation, the protocol

may be symmetric or asymmetric. In a symmetric protocol, either side may play the

master or slave roles. In an asymmetric protocol, one side is immutably recognized as

the master, with the other as the slave. An example of a symmetric protocol is the

TELNET protocol used in the Internet for remote terminal emulation. An example of an

asymmetric protocol is the Internet �le transfer protocol, FTP. No matter whether the

speci�c protocol used in obtaining a service is symmetric or asymmetric, when accessing

a service there is a \client process" and a \server process". We will �rst consider the

properties of server processes, then client processes.

A server process normally listens at a well known address for service requests. That is,

the server process remains dormant until a connection is requested by a client's connection

to the server's address. At such a time the server process \wakes up" and services the

client, performing whatever appropriate actions the client requests of it.

Alternative schemes which use a service server may be used to eliminate a ock of

server processes clogging the system while remaining dormant most of the time. For

Internet servers in 4.3BSD, this scheme has been implemented via inetd, the so called

\internet super-server." Inetd listens at a variety of ports, determined at start-up by

reading a con�guration �le. When a connection is requested to a port on which inetd is

listening, inetd executes the appropriate server program to handle the client. Inetd will

be described in more detail in section 3.4.

3.3.1 Servers

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain

names. For example, the remote login server's main loop is of the form shown below

(AmiTCP/IP way):

main(int argc, char *argv)

{

int f;

struct sockaddr_in from;

struct servent *sp;

System Manual AmiTCP/IP Section 3.3 49

sp = getservbyname("login", "tcp");

if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");

exit(1);

}

...

sin.sin_port = sp->s_port; /* Restricted port */

...

f = socket(AF_INET, SOCK_STREAM, 0);

...

if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

...

}

...

listen(f, 5);

for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);

if (g < 0) {

if (errno != EINTR)

syslog(LOG_ERR, "rlogind: accept: %s", errors[errno]);

continue;

}

/*

* AmiTCP code follows...

*/

id = ReleaseSocket(g, UNIQUE_ID);

startit(id, &from);

}

}

The �rst step taken by the server is look up its service de�nition:

sp = getservbyname("login", "tcp");

if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");

exit(1);

}

The result of the getservbyname call is used in later portions of the code to de�ne the

Internet port at which it listens for service requests (indicated by a connection).

Once a server has established a pristine environment, it creates a socket and begins

accepting service requests. The bind() call is required to insure the server listens at its

expected location.

50 Section 3.3 AmiTCP/IP System Manual

The main body of the loop is fairly simple:

for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);

if (g < 0) {

if (errno != EINTR)

syslog(LOG_ERR, "rlogind: accept: %s", errors[errno]);

continue;

}

/*

* AmiTCP code follows...

*/

id = ReleaseSocket(g, UNIQUE_ID);

startit(id, &from);

}

An accept() call blocks the server until a client requests service. This call could return

a failure status if the call is interrupted by a signal such as CTRL-C (to be discussed in

section 3.4). Therefore, the return value from accept() is checked to insure a connection

has actually been established.

With a connection in hand, servers using AmiTCP/IP socket library, this new socket

is released to an external list inside AmiTCP/IP process via ReleaseSocket() call.

ReleaseSocket() returns an id (unique if requested). startit() starts a new AmigaOS

task and informs the id for it. This new task then uses ObtainSocket() with id as

argument to receive the socket. The address of the client is also handled the new task

because it requires it in authenticating clients.

3.3.2 Clients

The client side of the remote login service was shown earlier in section 3.2. One can see

the separate, asymmetric roles of the client and server clearly in the code. The server is a

passive entity, listening for client connections, while the client process is an active entity,

initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in

the server process, the �rst step is to locate the service de�nition for a remote login:

sp = getservbyname("login", "tcp");

if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");

exit(1);

}

System Manual AmiTCP/IP Section 3.3 51

Next the destination host is looked up with a gethostbyname() call:

hp = gethostbyname(argv[1]);

if (hp == NULL) {

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);

exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at

the requested host and start up the remote login protocol. The address bu�er is �lled in

with the Internet address and rlogin port number of the foreign host.

bzero((char *)&server, sizeof (server));

server.sin_port = sp->s_port;

bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);

server.sin_family = hp->h_addrtype;

A socket is created, and a connection initiated. Note that connect() implicitly performs

a bind() call, because s is unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);

if (s < 0) {

perror("rlogin: socket");

exit(3);

}

...

if (connect(s, (struct sockaddr *) &server,

sizeof (server)) < 0) {

perror("rlogin: connect");

exit(4);

}

The details of the remote login protocol will not be considered here.

3.3.3 Connectionless Servers

While connection-based services are the norm, some services are based on the use of data-

gram sockets. One, in particular, is the \rwho" service which provides users with status

information for hosts connected to a local area network. This service, while predicated

on the ability to broadcast information to all hosts connected to a particular network, is

of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may �nd out the current status of a

machine with the ruptime program. The output generated is illustrated below.

52 Section 3.3 AmiTCP/IP System Manual

Ruptime Output

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31

cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59

calder up 10:10, 0 users, load 0.27, 0.15, 0.14

dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65

degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41

ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56

ernie down 0:24

esvax down 17:04

ingres down 0:26

kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11

matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05

medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50

merlin down 19+15:37

miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12

monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07

oz down 16:09

statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86

ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Status information for each host is periodically broadcast by rwho server processes on

each machine. The same server process also receives the status information and uses it to

update a database. This database is then interpreted to generate the status information

for each host. Servers operate autonomously, coupled only by the local network and its

broadcast capabilities.

Note that the use of broadcast for such a task is fairly ine�cient, as all hosts must

process each message, whether or not using an rwho server. Unless such a service is

su�ciently universal and is frequently used, the expense of periodic broadcasts outweighs

the simplicity.

The rwho server, in a simpli�ed form, is pictured next

9

:

BYTE alrmsig;

main()

{

long on;

fd_set readfds;

...

sp = getservbyname("who", "udp");

sin.sin_port = sp->s_port;

net = getnetbyname("localnet");

sin.sin_addr = inet_makeaddr(INADDR_ANY, net);

9

A real code must always test the return values of various services against errors. Thes e tests are

partly omitted from this code to show the matters important to this section.

System Manual AmiTCP/IP Section 3.3 53

...

s = socket(AF_INET, SOCK_DGRAM, 0);

...

on = 1;

if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) {

syslog(LOG_ERR, "rwhod: setsockopt SO_BROADCAST: %s",

strerror(errno));

exit(1);

}

bind(s, (struct sockaddr *) &sin, sizeof (sin));

...

alrmsig = AllocSignal(-1);

onalrm(); /* activate and handle periodic alarm system */

FD_ZERO(&readfds);

FD_SET(s, &readfds);

for (;;) {

struct whod wd;

struct sockaddr_in from;

int n, cc, whod, len = sizeof (from);

ULONG alrmmask;

alrmmask = 1 << alrmsig;

n = WaitSelect(s, &readfds, NULL, NULL, NULL, &alrmmask);

if (n < 0) {

syslog(LOG_ERR, "rwhod: WaitSelect: %s", strerror(errno));

exit(1);

}

if (alrmmask)

onalrm(); /* handles the alarm */

if (n > 0) {

cc = recvfrom(s, (char *)&wd, sizeof (wd), 0,

(struct sockaddr *)&from, &len);

if (cc <= 0) {

if (cc < 0)

syslog(LOG_ERR, "rwhod: recv: %s", strerror(errno));

continue;

}

if (from.sin_port != sin.sin_port) {

syslog(LOG_ERR, "rwhod: %ld: bad from port",

ntohs(from.sin_port));

continue;

}

...

54 Section 3.3 AmiTCP/IP System Manual

if (!verify(wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: malformed host name from %lx",

ntohl(from.sin_addr.s_addr));

continue;

}

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);

whod = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0666);

...

(void) time(&wd.wd_recvtime);

(void) write(whod, (char *)&wd, cc);

(void) close(whod);

}

}

}

There are two separate tasks performed by the server. The �rst task is to act as a

receiver of status information broadcast by other hosts on the network. This job is carried

out in the main loop of the program. Packets received at the rwho port are interrogated

to insure they've been sent by another rwho server process, then are time stamped with

their arrival time and used to update a �le indicating the status of the host. When a

host has not been heard from for an extended period of time, the database interpretation

routines assume the host is down and indicate such on the status reports. This algorithm

is prone to error as a server may be down while a host is actually up, but serves our

current needs.

The second task performed by the server is to supply information regarding the status

of its host. This involves periodically acquiring system status information, packaging it

up in a message and broadcasting it on the local network for other rwho servers to hear.

The supply function is triggered by a timer and runs o� a signal. Locating the system

status information is somewhat involved, but uninteresting. Deciding where to transmit

the resultant packet is somewhat problematical, however.

Status information must be broadcast on the local network. For networks which

do not support the notion of broadcast another scheme must be used to simulate or

replace broadcasting. One possibility is to enumerate the known neighbors (based on the

status messages received from other rwho servers). This, unfortunately, requires some

bootstrapping information, for a server will have no idea what machines are its neighbors

until it receives status messages from them. Therefore, if all machines on a net are freshly

booted, no machine will have any known neighbors and thus never receive, or send, any

status information. This is the identical problem faced by the routing table management

process in propagating routing status information. The standard solution, unsatisfactory

as it may be, is to inform one or more servers of known neighbors and request that

theyalways communicate with these neighbors. If each server has at least one neighbor

supplied to it, status information may then propagate through a neighbor to hosts which

are not (possibly) directly neighbors. If the server is able to support networks which

System Manual AmiTCP/IP Section 3.4 55

provide a broadcast capability, as well as those which do not, then networks with an

arbitrary topology may share status information

10

It is important that software operating in a distributed environment not have any

site-dependent information compiled into it. This would require a separate copy of the

server at each host and make maintenance a severe headache. 4.3BSD attempts to isolate

host-speci�c information from applications by providing system calls which return the

necessary information

11

. A mechanism exists, in the form of an IoctlSocket() call, for

�nding the collection of networks to which a host is directly connected. Further, a local

network broadcasting mechanism has been implemented at the socket level. Combining

these two features allows a process to broadcast on any directly connected local network

which supports the notion of broadcasting in a site independent manner. This allows

4.3BSD to solve the problem of deciding how to propagate status information in the

case of rwho, or more generally in broadcasting: Such status information is broadcast to

connected networks at the socket level, where the connected networks have been obtained

via the appropriate ioctl calls. The speci�cs of such broadcastings are complex, however,

and will be covered in section 3.4.

3.4 Advanced Topics

A number of facilities have yet to be discussed. For most users of the AmiTCP/IP

the mechanisms already described will su�ce in constructing distributed applications.

However, others will �nd the need to utilize some of the features which we consider in

this section.

3.4.1 Out Of Band Data

The stream socket abstraction includes the notion of \out of band" data. Out of band data

is a logically independent transmission channel associated with each pair of connected

stream sockets. Out of band data is delivered to the user independently of normal data.

The abstraction de�nes that the out of band data facilities must support the reliable

delivery of at least one out of band message at a time. This message may contain at

least one byte of data, and at least one message may be pending delivery to the user

at any one time. For communications protocols which support only in-band signaling

(i.e. the urgent data is delivered in sequence with the normal data), the system normally

extracts the data from the normal data stream and stores it separately. This allows users

to choose between receiving the urgent data in order and receiving it out of sequence

without having to bu�er all the intervening data. It is possible to \peek" (via MSG PEEK)

at out of band data. If the socket has an owner, a signal is generated when the protocol

is noti�ed of its existence. A process can set the task to be informed by a signal via the

10

One must, however, be concerned about loops. That is, if a host is connected to multiple networks, it

will receive status information from itself. This can lead to an endless, wasteful, exchange of information.

11

An example of such a system call is the gethostname() call which returns the host's o�cial name.

56 Section 3.4 AmiTCP/IP System Manual

appropriate IoctlSocket() and SetSocketSignals() calls, as described below in section

3.4.3. If multiple sockets may have out of band data awaiting delivery, a select() call for

exceptional conditions may be used to determine those sockets with such data pending.

Neither the signal nor the select() indicate the actual arrival of the out-of-band data,

but only noti�cation that it is pending.

In addition to the information passed, a logical mark is placed in the data stream

to indicate the point at which the out of band data was sent

12

. The remote login and

remote shell applications use this facility to propagate signals between client and server

processes. When a signal ushs any pending output from the remote process(es), all data

up to the mark in the data stream is discarded.

To send an out of band message the MSG OOB ag is supplied to a send() or sendto()

calls, while to receive out of band data MSG OOB should be indicated when performing a

recvfrom() or recv() call. To �nd out if the read pointer is currently pointing at the

mark in the data stream, the SIOCATMARK ioctl is provided:

IoctlSocket(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming

out of band data has arrived), the next read will provide data sent by the client prior to

transmission of the out of band signal. The routine used in the remote login process to

ush output on receipt of an interrupt or quit signal is shown below:

#include <sys/ioctl.h>

#include <sys/socket.h>

...

oob()

{

int mark;

char waste[BUFSIZ];

/* flush terminal I/O on receipt of out of band data */

for (;;) {

if (IoctlSocket(rem, SIOCATMARK, &mark) < 0) {

perror("IoctlSocket");

break;

}

if (mark)

break;

recv(rem, waste, sizeof (waste), 0);

}

if (recv(rem, &mark, 1, MSG_OOB) < 0) {

12

AmiTCP/IP follows the BSD interpretation of the RFC 793 in which the concept of out-of-band

data is introduced. The BSD interpretation is in conict with (later) de�ned Host Requirements laid

down in RFC 1122.

System Manual AmiTCP/IP Section 3.4 57

perror("recv");

...

}

...

}

The normal data up to the mark if �rst read (discarding it), then the out-of-band

byte is read.

A process may also read or peek at the out-of-band data without �rst reading up to

the mark. This is more di�cult when the underlying protocol delivers the urgent data

in-band with the normal data, and only sends noti�cation of its presence ahead of time

(e.g., the TCP protocol used to implement streams in the Internet domain). With such

protocols, the out-of-band byte may not yet have arrived when a recv() is done with

the MSG OOB ag. In that case, the call will return an error of EWOULDBLOCK. Worse, there

may be enough in-band data in the input bu�er that normal ow control prevents the

peer from sending the urgent data until the bu�er is cleared. The process must then read

enough of the queued data that the urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple

urgent signals (e.g., telnet) need to retain the position of urgent data within the stream.

This treatment is available as a socket-level option, SO OOBINLINE; see function reference

for setsockopt() for usage. With this option, the position of urgent data (the \mark")

is retained, but the urgent data immediately follows the mark within the normal data

stream returned without the MSG OOB ag. Reception of multiple urgent indications causes

the mark to move, but no out-of-band data are lost.

3.4.2 Non-Blocking Sockets

It is occasionally convenient to make use of sockets which do not block; that is, I/O

requests which cannot complete immediately and would therefore cause the process to

be suspended awaiting completion are not executed, and an error code is returned. Once

a socket has been created via the socket() call, it may be marked as non-blocking by

IoctlSocket() as follows:

#include <sys/ioctl.h>

...

int s;

long yes = TRUE;

...

s = socket(AF_INET, SOCK_STREAM, 0);

...

if (IoctlSocket(s, FIONBIO, &yes) < 0)

perror("IoctlSocket FIONBIO");

exit(1);

}

...

58 Section 3.4 AmiTCP/IP System Manual

When performing non-blocking I/O on sockets, one must be careful to check for the

error EWOULDBLOCK (stored in the global variable errno), which occurs when an operation

would normally block, but the socket it was performed on is marked as non-blocking.

In particular, accept(), connect(), send(), sendto(), recv() and recvto() can all

return EWOULDBLOCK, and processes should be prepared to deal with such return codes.

If an operation such as a send() cannot be done in its entirety, but partial writes are

sensible (for example, when using a stream socket), the data that can be sent immediately

will be processed, and the return value will indicate the amount actually sent.

3.4.3 Signal Driven Socket I/O

TheAmiTCP/IP allows a task to be noti�ed via a signal when a socket has either normal

or out-of-band data waiting to be read. Use of this facility requres four steps:

1. The signals to be used must be allocated with Exec AllocSignal() call.

2. The allocated signal(s) must be registered to the AmiTCP/IP with the

SetSocketSignals() call. The signals registered with SetSocketSignals() af-

fect all sockets of the calling task, so this is usually done only after OpenLibrary()

call.

3. The owner of the socket must be set to the task itself (note that the owner of a socket

is unspeci�ed by default). This is accomplished by the use of an IoctlSocket()

call.

4. Asynchronous noti�cation for the socket must be enabled with another

IoctlSocket() call

Note that it is application's responsibility to react on received signals.

Sample code to allow a given process to receive information on pending I/O requests

as they occur for a socket s is given below:

#include <exec/tasks.h>

#include <sys/ioctl.h>

...

BYTE SIGIO = -1, SIGURG = -1;

...

struct Task *thisTask = FindTask(NULL); /* our task pointer */

long yes = TRUE;

/* Allocate signals for asynchronous notification */

if ((SIGIO = AllocSignal(-1)) == -1) {

fprintf(stderr, "allocSignal failed.\n");

exit(1);

}

System Manual AmiTCP/IP Section 3.4 59

atexit(freeSignals); /* free allocated signals on exit */

if ((SIGURG = AllocSignal(-1)) == -1) {

fprintf(stderr, "allocSignal failed.\n");

exit(1);

}

/* Set socket signals for this task */

SetSocketSignals(SIGBREAKF_CTRL_C, 1 << SIGIO, 1 << SIGURG);

/* Set the process receiving SIGIO/SIGURG signals to us */

if (IoctlSocket(s, FIOSETOWN, &thisTask) < 0) {

perror("IoctlSocket FIOSETOWN");

exit(1);

}

/* Allow receipt of asynchronous I/O signals */

if (IoctlSocket(s, FIOASYNC, &yes) < 0) {

perror("IoctlSocket FIOASYNC");

exit(1);

}

3.4.4 Selecting Speci�c Protocols

If the third argument to the socket() call is 0, socket will select a default protocol to use

with the returned socket of the type requested. The default protocol is usually correct,

and alternate choices are not usually available. However, when using \raw" sockets

to communicate directly with lower-level protocols or hardware interfaces, the protocol

argument may be important for setting up demultiplexing. For example, raw sockets in

the Internet family may be used to implement a new protocol above IP, and the socket

will receive packets only for the protocol speci�ed. To obtain a particular protocol one

determines the protocol number as de�ned within the communication domain. For the

Internet domain one may use one of the library routines discussed in section 3.2, such as

getprotobyname():

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

...

pp = getprotobyname("newtcp");

s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

60 Section 3.4 AmiTCP/IP System Manual

This would result in a socket s using a stream based connection, but with protocol type

of \newtcp" instead of the default \tcp."

3.4.5 Address Binding

As was mentioned in section 3.1, binding addresses to sockets in the Internet domains

can be fairly complex. As a brief reminder, these associations are composed of local and

foreign addresses, and local and foreign ports. Port numbers are allocated out of separate

spaces, one for each system and one for each domain on that system. Through the bind()

call, a process may specify half of an association, the <local address, local port> part,

while the connect() and accept() calls are used to complete a socket's association by

specifying the <foreign address, foreign port> part. Since the association is created in

two steps the association uniqueness requirement indicated previously could be violated

unless care is taken. Further, it is unrealistic to expect user programs to always know

proper values to use for the local address and local port since a host may reside on multiple

networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a \wildcard"

address has been provided. When an address is speci�ed as INADDR ANY (a manifest

constant de�ned in �le netinet/in.h), the system interprets the address as \any valid

address". For example, to bind a speci�c port number to a socket, but leave the local

address unspeci�ed, the following code might be used:

#include <sys/types.h>

#include <netinet/in.h>

...

struct sockaddr_in sin;

...

s = socket(AF_INET, SOCK_STREAM, 0);

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = htonl(INADDR_ANY);

sin.sin_port = htons(MYPORT);

bzero(sin.sin_zero, sizeof(sin.sin_zero));

bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the speci�ed

port number, and sent to any of the possible addresses assigned to a host. For example, if

a host has addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as above, the process

will be able to accept connection requests which are addressed to 128.32.0.4 or 10.0.0.78.

If a server process wished to only allow hosts on a given network connect to it, it would

bind the address of the host on the appropriate network.

In a similar fashion, a local port may be left unspeci�ed (speci�ed as zero), in which

case the system will select an appropriate port number for it. For example, to bind a

speci�c local address to a socket, but to leave the local port number unspeci�ed:

System Manual AmiTCP/IP Section 3.4 61

hp = gethostbyname(hostname);

if (hp == NULL) {

...

}

bzero(&sin, sizeof(sin));

bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);

sin.sin_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The �rst is that on

4BSD systems, Internet ports below IPPORT RESERVED (1024) are reserved for privi-

leged processes

13

; Internet ports above IPPORT USERRESERVED (5000) are reserved for

non-privileged servers. The second is that the port number is not currently bound to

some other socket. In order to �nd a free Internet port number in the privileged range

the rresvport() library routine may be used as follows to return a stream socket in with

a privileged port number:

int lport = IPPORT_RESERVED - 1;

int s;

s = rresvport(&lport);

if (s < 0) {

if (errno == EAGAIN)

fprintf(stderr, "socket: all ports in use\n");

else

perror("rresvport: socket");

...

}

The restriction on allocating ports was done to allow processes executing in a secure

environment to perform authentication based on the originating address and port number.

For example, the rlogin command allows users to log in across a network without being

asked for a password, if two conditions hold: First, the name of the system the user is

logging in from is in the �le AmiTCP:db/hosts.equiv

14

on the system he is logging

into (or the system name and the user name are in the user's .rhosts �le in the user's

home directory), and second, that the user's rlogin process is coming from a privileged

port on the machine from which he is logging. The port number and network address

of the machine from which the user is logging in can be determined either by the from

result of the accept() call, or from the getpeername() call.

In certain cases the algorithm used by the system in selecting port numbers is unsuit-

able for an application. This is because associations are created in a two step process. For

example, the Internet �le transfer protocol, FTP, speci�es that data connections must

13

All processes in AmigaOS are considered as privileged.

14

In UNIX /etc/hosts.equiv

62 Section 3.4 AmiTCP/IP System Manual

always originate from the same local port. However, duplicate associations are avoided by

connecting to di�erent foreign ports. In this situation the system would disallow binding

the same local address and port number to a socket if a previous data connection's socket

still existed. To override the default port selection algorithm, an option call must be

performed prior to address binding:

...

long on = 1;

...

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does

not violate the uniqueness requirement as the system still checks at connect time to be

sure any other sockets with the same local address and port do not have the same foreign

address and port. If the association already exists, the error EADDRINUSE is returned.

3.4.6 Broadcasting And Determining Network Con�guration

By using a datagram socket, it is possible to send broadcast packets on many networks

supported by the system. The network itself must support broadcast; the system provides

no simulation of broadcast in software. Broadcast messages can place a high load on a

network since they force every host on the network to service them. Consequently, the

ability to send broadcast packets has been limited to sockets which are explicitly marked

as allowing broadcasting. Broadcast is typically used for one of two reasons: it is desired

to �nd a resource on a local network without prior knowledge of its address, or important

functions such as routing require that information be sent to all accessible neighbors.

To send a broadcast message, a datagram socket should be created:

s = socket(AF_INET, SOCK_DGRAM, 0);

The socket is marked as allowing broadcasting,

long on = 1;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));

and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = htonl(INADDR_ANY);

sin.sin_port = htons(MYPORT);

bzero(sin.sin_zero, sizeof(sin.sin_zero));

bind(s, (struct sockaddr *) &sin, sizeof (sin));

System Manual AmiTCP/IP Section 3.4 63

The destination address of the message to be broadcast depends on the network(s) on

which the message is to be broadcast. The Internet domain supports a shorthand no-

tation for broadcast on the local network, the address INADDR BROADCAST (de�ned in

netinet/in.h). To determine the list of addresses for all reachable neighbors requires

knowledge of the networks to which the host is connected. Since this information should

be obtained in a host independent fashion and may be impossible to derive, 4.3BSD

provides a method of retrieving this information from the system data structures. The

SIOCGIFCONF IoctlSocket() call returns the interface con�guration of a host in the

form of a single ifconf structure; this structure contains a \data area" which is made

up of an array of of ifreq structures, one for each network interface to which the host is

connected. These structures are de�ned in net/if.h as follows:

struct ifconf {

int ifc_len; /* size of associated buffer */

union {

caddr_t ifcu_buf;

struct ifreq *ifcu_req;

} ifc_ifcu;

};

#define ifc_buf ifc_ifcu.ifcu_buf/* buffer address */

#define ifc_req ifc_ifcu.ifcu_req/* array of structures returned */

#define IFNAMSIZ 64

struct ifreq {

char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */

union {

struct sockaddr ifru_addr;

struct sockaddr ifru_dstaddr;

struct sockaddr ifru_broadaddr;

short ifru_flags;

caddr_t ifru_data;

} ifr_ifru;

};

#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */

#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */

#define ifr_flags ifr_ifru.ifru_flags /* flags */

#define ifr_data ifr_ifru.ifru_data /* for use by interface */

The actual call which obtains the interface con�guration is

struct ifconf ifc;

char buf[BUFSIZ];

64 Section 3.4 AmiTCP/IP System Manual

ifc.ifc_len = sizeof (buf);

ifc.ifc_buf = buf;

if (IoctlSocket(s, SIOCGIFCONF, (char *) &ifc) < 0) {

...

}

After this call buf will contain one ifreq structure for each network to which the host is

connected, and ifc.ifc len will have been modi�ed to reect the number of bytes used

by the ifreq structures.

For each structure there exists a set of \interface ags" which tell whether the network

corresponding to that interface is up or down, point to point or broadcast, etc. The

SIOCGIFFLAGS IoctlSocket() retrieves these ags for an interface speci�ed by an ifreq

structure as follows:

struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {

/*

* We must be careful that we don't use an interface

* devoted to an address family other than those intended;

* if we were interested in NS interfaces, the

* AF_INET would be AF_NS.

*/

if (ifr->ifr_addr.sa_family != AF_INET)

continue;

if (IoctlSocket(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

...

}

/*

* Skip boring cases.

*/

if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK) ||

(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0)

continue;

Once the ags have been obtained, the broadcast address must be obtained. In the case of

broadcast networks this is done via the SIOCGIFBRDADDR IoctlSocket(), while for point-

to-point networks the address of the destination host is obtained with SIOCGIFDSTADDR.

struct sockaddr dst;

System Manual AmiTCP/IP Section 3.4 65

if (ifr->ifr_flags & IFF_POINTTOPOINT) {

if (IoctlSocket(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

...

}

bcopy((char *) ifr->ifr_dstaddr, (char *) &dst,

sizeof (ifr->ifr_dstaddr));

} else if (ifr->ifr_flags & IFF_BROADCAST) {

if (IoctlSocket(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

...

}

bcopy((char *) ifr->ifr_broadaddr, (char *) &dst,

sizeof (ifr->ifr_broadaddr));

}

After the appropriate ioctl's have obtained the broadcast or destination address (now in

dst), the sendto() call may be used:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));

}

In the above loop one sendto() occurs for every interface to which the host is connected

that supports the notion of broadcast or point-to-point addressing. If a process only

wished to send broadcast messages on a given network, code similar to that outlined

above would be used, but the loop would need to �nd the correct destination address.

Received broadcast messages contain the senders address and port, as datagram sock-

ets are bound before a message is allowed to go out.

AmiTCP/IP speci�c extensions

Extensions to interface ioctls

The following ioctls are used to con�gure protocol and hardware speci�c properties of

a sana softc interface. They are used in the AmiTCP/IP only.

SIOCSSANATAGS Set SANA-II speci�c properties with a tag list.

SIOCGSANATAGS Get SANA-II speci�c properties into the wiretype parameters struc-

ture and a user tag list.

These ioctls use the following structure as a argument:

struct wiretype_parameters

{

ULONG wiretype; /* the wiretype of the interface */

66 Section 3.4 AmiTCP/IP System Manual

WORD flags; /* iff_flags */

struct TagItem *tags; /* tag list user provides */

};

SIOCGARPT Get the contents of an ARP mapping cache into a struct arpreq table.

This ioctl takes the following arptabreq structure as an argument:

/*

* An AmiTCP/IP specific ARP table ioctl request

*/

struct arptabreq {

struct arpreq atr_arpreq; /* To identify the interface */

long atr_size; /* # of elements in atr_table */

long atr_inuse; /* # of elements in use */

struct arpreq *atr_table;

};

The atr arpreq speci�es the used interface. The hardware address for the interface

is returned in the arp ha �eld of atr arpreq structure.

The SIOCGARPT ioctl reads at most atr size entries from the cache into the user

supplied bu�er atr table, if it is not NULL. Actual amount of returned entries is

returned in atr size. The current amount of cached mappings is returned in the

atr inuse.

3.4.7 Socket Options

It is possible to set and get a number of options on sockets via the setsockopt() and

getsockopt() calls. These options include such things as marking a socket for broad-

casting, not to route, to linger on close, etc. The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the option is to be

applied. level speci�es the protocol layer on which the option is to be applied; in most

cases this is the \socket level", indicated by the symbolic constant SOL SOCKET, de�ned

in sys/socket.h. The actual option is speci�ed in optname, and is a symbolic constant

also de�ned in sys/socket.h. optval and optlen point to the value of the option (in

most cases, whether the option is to be turned on or o�), and the length of the value of

the option, respectively. For getsockopt(), optlen is a value{result parameter, initially

System Manual AmiTCP/IP Section 3.4 67

set to the size of the storage area pointed to by optval, and modi�ed upon return to

indicate the actual amount of storage used.

An example should help clarify things. It is sometimes useful to determine the type

(e.g., stream, datagram, etc.) of an existing socket; programs under inetd (described in

section 3.4.8) may need to perform this task. This can be accomplished as follows via the

SO TYPE socket option and the getsockopt() call:

#include <sys/types.h>

#include <sys/socket.h>

long type, size;

size = sizeof (type);

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {

...

}

After the getsockopt() call, type will be set to the value of the socket type, as de�ned

in sys/socket.h. If, for example, the socket were a datagram socket, type would have

the value corresponding to SOCK DGRAM.

3.4.8 Inetd

One of the daemons provided with AmiTCP/IP is inetd, the so called \internet super{

server." Inetd is invoked at start-up time, and determines the servers, for which it is to

listen, from the �le AmiTCP:db/inetd.conf

15

. Once this information has been read

and a pristine environment created, inetd proceeds to create one socket for each service

it is to listen for, binding the appropriate port number to each socket.

Inetd then performs a select() on all these sockets for read availability, waiting

for somebody wishing a connection to the service corresponding to that socket. In-

etd then performs an accept() on the socket in question, releases the socket with a

ReleaseSocket() call and starts the appropriate server.

Servers making use of inetd are considerably simpli�ed, as inetd takes care of the

majority of the work required in establishing a connection. The server invoked by inetd

expects the socket connected to its client to be found by calling ObtainSocket(). The

client socket ID for the server is found in a DaemonMessage structure given to the server

process. Usually the netlib:autoinitd.o module takes care of obtaining the client socket

into global variable server socket. For practical purposes the code might assume this

socket to be 0.

One call which may be of interest to individuals writing servers under inetd is the

getpeername() call, which returns the address of the peer (process) connected on the

15

In UNIX systems /etc/inetd.conf.

68 Section 3.5 AmiTCP/IP System Manual

other end of the socket. For example, to log the Internet address in \dot notation" (e.g.,

\128.32.0.4") of a client connected to a server under inetd, the following code might be

used:

struct sockaddr_in name;

int namelen = sizeof (name);

...

if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {

syslog(LOG_ERR, "getpeername: %m");

exit(1);

} else

syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

...

While the getpeername() call is especially useful when writing programs to run with

inetd, it can be used under other circumstances.

Sources for a very simple TCP protocol server is included with AmiTCP/IP as an

example.

3.5 Deviation From Berkeley Sockets

This section discusses the di�erences between the API of the AmiTCP/IP and the

4.3BSD. They are not so numerous as it might seem to, but worth taking attention to

when porting existing 4.3BSD software to AmiTCP/IP.

3.5.1 Opening and Closing the Shared Library

Since the API is provided as a shared library, it must be opened to be able to access the

functions it provides. Note that any two tasks may not share a socket library base, since

the base contains task speci�c information.

AmiTCP/IP does resource tracking based on the information stored in a library base,

so it is essential that the library is closed after use, since the resources used by the base

are gone if the application exits without closing the base.

See section 3.1.2 for examples and more discussion on the subject.

3.5.2 Naming Conventions of the API Functions

The API functions which preserve the semantics of the BSD calls are named the same as

the original functions. In the name of binary compatibility between di�erent C compilers

the functions which either take a structure as an argument or return a structure as a value

had to be changed not to do so. These functions are named di�erently; all words in these

function names begin with an upper case letter. Inline functions

16

are provided with the

16

Or linker stubs in compilers with no inline functions.

System Manual AmiTCP/IP Section 3.5 69

original semantics, however. This makes it possible to keep using the original functions

when writing the code and still be binary compatible. The inline functions are mostly

trivial; for example the select() call is actually an inline which calls WaitSelect()with

last argument as NULL.

This is a matter which should be totally invisible for C users, but assembler program-

mers should take attention and be sure to pass arguments as described in the function

reference for the non-inline versions.

3.5.3 errno

Unix libraries return error values in a global variable named errno. Since a shared

library cannot know the address of any variables of an application, the address of the

errno must be explicitly told to the AmiTCP/IP. An alternative is to use Errno() call

to fetch the error value, but since the �rst method needs no modi�cations to the existing

sources (besides calling SetErrnoPtr() once in the beginning), it is the preferred method.

Section 3.1.2 contains examples and more discussion about the matter.

3.5.4 New Field in the sockaddr Structures

Since AmiTCP/IP is based on the BSD Net/2 release, it has few di�erences to the

4.3BSD. Most notable one is that the sockaddr and sockaddr in structures have a

new �eld telling the length of the structure. These are named as sa len and sin len

respectively. These �elds are used by the AmiTCP/IP to determine the real length of

the address given.

In addition the sockaddr in structure has a �eld named sin zero, which should be

initialized to zero before passed to the AmiTCP/IP, since any garbage left there will be

used by the routing facility (which obviously leads to undesired behaviour).

3.5.5 Linger Time

The unit of the linger time of a socket is a second. The Net/2 code seemed to use ticks

17

.

3.5.6 Transferring Sockets from a Task to Another

Since AmigaOS has no fork() call, in which the child process inherits the �le descriptors,

and hence sockets, a mechanism for transferring sockets from a task to another must be

provided. This is accomplished by the calls ReleaseSocket(), ReleaseCopyOfSocket()

and ObtainSocket(), which release a socket, a copy of a socket and obtain a released

socket, respectively. An id is given to a socket placed in the list of released sockets. This

id can be either unique or be based on a service number in cases where it is irrelevant

which instance of the server process for the service in question obtains the socket. If an

17

One tick is 1/hz:th of a second, where hz is the frequency of the electricity of the wall socket.

70 Section 3.5 AmiTCP/IP System Manual

unique id is used, the releasing task is responsible of transferring the id to the obtaining

task.

This feature a�ects the server processes only, since the clients usually create the

socket(s) on their own.

3.5.7 Ioctl Di�erences

The Unix ioctl() function is renamed as IoctlSocket() inAmiTCP/IP to avoid name

clashes with some C runtime libraries.

Following summarizes other di�erences in the ioctl calls:

1. FIOCLEX and FIONCLEX are silently ignored, that is, they are accepted, but have

no e�ect. Whether sockets should be closed on exec() or not is irrelevant, since

AmigaOS has no such feature (see discussion about fork() above).

2. FIOSETOWN and SIOCSPGRP take a pointer to a struct Task * as an argument

instead of a pointer to a process (or group) id. Note that if the task in question has

not opened the bsdsocket.library the owner of the precess is set to NULL (disabled).

The task pointer is used as the receiver of the asynchronous noti�cation signals if

asynchronous noti�cation is enabled.

3. FIOGETOWN and SIOCGPGRP take a pointer to a struct Task * as an argument in

which the current task pointer of the owner of the socket in question is placed on

return.

3.5.8 Signal Handling

There is a fundamental di�erence between BSD Unix and Amiga signal handling and

the system call interface. In the Unix systems a received signal may interrupt a process

executing a system call. If there is a signal handler installed, it can be executed before

the system call returns to the main execution branch with an error code.

However, there are some system calls which may not be interrupted. If a Unix process

has a negative priority, tsleep() does not wake up until the speci�ed condition is met.

The interrupted system call does not have any unrecoverable e�ects, the execution of

the program may continue after the errno is checked against other errors than EINTR.

In the AmigaOS, Exec, there are no speci�c system calls. All OS functions are pro-

vided by shared libraries. There are either no separate kernel and user memory spaces,

the one common memory space is shared by all processes. The IO system is based on

messages, which are implemented as shared memory areas. When a program receives a

message to a port, it is delivered a signal associated with the port.

While it is possible to use signal handlers with Exec, they are even more dangerous to

use and restricted than in Unix systems. This is not recommended, since the exception

handler must behave like any real interrupt handler. Calls provided by AmiTCP/IP

System Manual AmiTCP/IP Section 3.5 71

are not callable from interrupts. Further, it is not possible to interrupt a system call

implemented as a shared library function.

The application must itself react on receipt of the signals. The recommended way of

handling these signals is by the normal Wait() of by AmiTCP/IP call WaitSelect(),

which allows an application to specify a signal mask which should abort the selection.

The application then checks the received signals and calls appropriate handler for the

signal.

3.5.9 Asynchronous I/O

AmigaOS does not have any reserved signals for networking, such as SIGIO or SIGURG in

Unix systems, and so the scheme used in asynchronous noti�cation must be changed a

little.

The application can set a group of signal masks, with function named SetSocketSignals(),

to be used by the AmiTCP/IP. First argument speci�es the signal mask which should

break the blocking of the blocking socket calls. It is by default set to the signal for

CTRL-C. Second argument speci�es the signal(s) to be sent when asynchronous noti�ca-

tion for readiness to read is necessary. This mask lets the application de�ne which signal

should be used as replacement for SIGIO signal of the Unix systems. Third and last

argument speci�es the corresponding mask for the asynchronous noti�cation of urgent

(out-of-band) data (SIGURG). These last two masks are zero by default.

Note that there is no way to query the current settings of these signals form the

AmiTCP/IP, so the application must store the signal numbers (or masks) for later use.

Also note that the break mask must be explicitly given if SetSocketSignals() is called,

since the values supplied override the default settings.

3.5.10 Constructing an Event Loop

Amiga programs are often constructed around an event loop, in which Wait() function

is used to wait for some subset of given signals to arrive. When a signal is received, some

actions are taken and if IO is performed, it is usually asynchronous.

Many Unix programs use to do synchronous IO and let the signal handlers to handle

special events (window size changes, timeouts, etc.). This can be emulated to some extent

with AmigaOS, since it is possible to specify an exeption function to handle reception of

given signals. This is very limited, though, since the exeption code is executed at true

interrupt level, and may thus pre-empt the main process in an arbitrary location. Also

note that a very limited set of shared library functions can be called while in interrupt,

especially note that any AmiTCP/IP function may NOT be called from interrupt code.

AmiTCP/IP o�ers remedy for this, however. The application can use WaitSelect()

to handle both Amiga signals and socket IO multiplexing. Selecting assures that the

following socket calls will not block

18

.

18

See NOTES section of the reference for the WaitSelect().

72 Section 3.5 AmiTCP/IP System Manual

Another possiblility is to use signal driven socket IO (see section 3.4.3).

Yet another possibility is to specify a special break mask with SetSocketSignals()

function. The signals in the mask cause any blocking socket IO routine to return with

the error code EINTR. Note that the signals are not cleared in this procedure. The Wait()

with the same signal mask can be used to determine (and clear) the received signals. This

allows the usage of synchronous socket IO, but the EINTR error code must be checked

after each failing call.

3.5.11 "Killing" the Processes

In AmigaOS the applications must co-operate with the OS for the user to be able to

stop them. This is why the blocking operations of the AmiTCP/IP can be aborted. By

default the reception of CTRL-C signal aborts any blocking call. The call returns an error

value (in errno) of EINTR when aborted. In addition the signal which caused the break

will remain set for the application to be able to react on it in its normal event processing.

This means that the application need not specially check for EINTR after every socket call

as long as they eventually check for the break signal.

All sockets left open by the application are closed by the CloseLibrary() call. You

may left the sockets open when aborting the program, because the socket library is closed

automatically during the exit process if either autotermination function (speci�c to SAS

C) or ANSI atexit() function is installed before the exit is done. .

The signals which cause the abort can be set with the SetSocketSignals() call.

The break signal mask is given as the �rst argument. Calling this function discards the

previous values of the sockets signal masks. Aborting can be disabled by giving the mask

as 0L. See section 3.5.9 for more discussion about the SetSocketSignals() call.

3.5.12 WaitSelect()

In AmiTCP/IP no other than socket I/O can be multiplexed with the select() call.

This may be a major pain as I/O is normally multiplexed with an Wait() loop, waiting

for given signals to arrive. This is the motivation for the WaitSelect() call. It combines

the selection and waiting in a single call

19

. The WaitSelect() takes one argument in

addition to the normal select() call. It is a pointer to signal mask to wait for in addition

to the signals that the AmiTCP/IP uses internally. If any of these signals is received,

they are returned as a result in the same signal mask. Signals speci�ed in the given

signal mask override the signals of the break mask (see previous section). If the same

signal is speci�ed in both the SIGINTR mask and the mask given to the WaitSelect(),

the reception of the signal causes it to be cleared and returned in the mask as the result.

WaitSelect() can be used as replacement for the Wait() in applications which require

to multiplex both socket related and other Amiga I/O.

19

This feature was really easy to implement, since AmiTCP/IP uses a Wait() to wait for I/O events

itself.

Appendix B

API Function Reference

This appendix is a complete reference to the functions and concepts provided by the

AmiTCP/IP system.

Table of Contents

Standard BSD Style Socket Functions

accept : 142

bind : 144

CloseSocket : 146

connect : 147

Dup2Socket : 149

getpeername : 150

getsockname : 151

getsockopt : 152

IoctlSocket : 156

listen : 159

recv : 160

recvfrom : 160

select : 162

send : 165

sendto : 165

setsockopt : 152

shutdown : 168

socket : 169

WaitSelect : 162

Other BSD Functions Related to Sockets

getdtablesize : 172

140

System Manual AmiTCP/IP Section B.0 141

Syslog : 173

Network Data and Address Manipulation

inet addr : 176

Inet LnaOf : 176

inet lnaof : 176

inet MakeAddr : 176

inet makeaddr : 176

Inet NetOf : 176

inet netof : 176

inet network : 176

Inet NtoA : 176

inet ntoa : 176

Network, Protocol and Service Queries

gethostbyaddr : 180

gethostbyname : 180

getnetbyaddr : 182

getnetbyname : 182

getprotobyname : 184

getprotobynumber : 184

getservbyname : 186

getservbyport : 186

AmiTCP/IP Speci�c Extensions

Errno : 188

ObtainSocket : 189

ReleaseCopyOfSocket : 190

ReleaseSocket : 192

SetDTableSize : 193

SetErrnoPtr : 194

SetSocketSignals : 196

142 Section B.1 AmiTCP/IP System Manual

B.1 Standard BSD Style Socket Functions

B.1.1 accept()

NAME

accept - accept a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

ns = accept(s, addr, addrlen)

D0 D0 A0 A1

long accept(long, struct sockaddr *, long *);

FUNCTION

The argument s is a socket that has been created with

socket(), bound to an address with bind(), and is listen-

ing for connections after a listen(). accept() extracts the

first connection on the queue of pending connections,

creates a new socket with the same properties of s and allo-

cates a new socket descriptor for the socket. If no pending

connections are present on the queue, and the socket is not

marked as non-blocking, accept() blocks the caller until a

connection is present. If the socket is marked non-blocking

and no pending connections are present on the queue,

accept() returns an error as described below. The accepted

socket is used to read and write data to and from the socket

which connected to this one; it is not used to accept more

connections. The original socket s remains open for accept-

ing further connections.

The argument addr is a result parameter that is filled in

with the address of the connecting entity, as known to the

communications layer. The exact format of the addr parame-

ter is determined by the domain in which the communication

is occurring. The addrlen is a value-result parameter; it

should initially contain the amount of space pointed to by

addr; on return it will contain the actual length (in bytes)

of the address returned. This call is used with

connection-based socket types, currently with SOCK_STREAM.

System Manual AmiTCP/IP Section B.1 143

It is possible to select() a socket for the purposes of

doing an accept() by selecting it for read.

RETURN VALUES

accept() returns a non-negative descriptor for the accepted

socket on success. On failure, it returns -1 and sets errno

to indicate the error.

ERRORS

EBADF - The descriptor is invalid.

EINTR - The operation was interrupted by a break

signal.

EOPNOTSUPP - The referenced socket is not of type

SOCK_STREAM.

EWOULDBLOCK - The socket is marked non-blocking and no con-

nections are present to be accepted.

SEE ALSO

bind(), connect(), listen(), select(), SetSocketSignals(),

socket()

144 Section B.1 AmiTCP/IP System Manual

B.1.2 bind()

NAME

bind - bind a name to a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

success = bind(s, name, namelen)

D0 D0 A0 D1

long bind(long, struct sockaddr *, long);

FUNCTION

bind() assigns a name to an unnamed socket. When a socket

is created with socket(2) it exists in a name space (address

family) but has no name assigned. bind() requests that the

name pointed to by name be assigned to the socket.

RETURN VALUES

0 - on success.

-1 - on failure and sets errno to indicate the error.

ERRORS

EACCES - The requested address is protected, and

the current user has inadequate permis-

sion to access it.

EADDRINUSE - The specified address is already in use.

EADDRNOTAVAIL - The specified address is not available

from the local machine.

EBADF - s is not a valid descriptor.

EINVAL - namelen is not the size of a valid

address for the specified address fam-

ily.

The socket is already bound to an

address.

System Manual AmiTCP/IP Section B.1 145

SEE ALSO

connect(), getsockname(), listen(), socket()

NOTES

The rules used in name binding vary between communication

domains.

146 Section B.1 AmiTCP/IP System Manual

B.1.3 CloseSocket()

NAME

CloseSocket - delete a socket descriptor

SYNOPSIS

success = CloseSocket(s)

D0 D0

long CloseSocket(long);

FUNCTION

CloseSocket() deletes a descriptor from the library base

socket reference table. If s is the last reference to the

underlying object, then the object will be deactivated and

socket (see socket()), associated naming information and

queued data are discarded.

All sockets are automatically closed when the socket library

is closed, but closing sockets as soon as possible is

recommended to save system resources.

RETURN VALUES

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS

EBADF - s is not an active socket descriptor.

EINTR - linger on close was interrupted.

The socket is closed, however.

SEE ALSO

accept(), SetSocketSignals(), shutdown(), socket(),

exec.library/CloseLibrary()

System Manual AmiTCP/IP Section B.1 147

B.1.4 connect()

NAME

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

success = connect(s, name, namelen)

D0 D0 A0 D1

long connect(long, struct sockaddr *, long);

FUNCTION

The parameter s is a socket. If it is of type SOCK_DGRAM,

then this call specifies the peer with which the socket is

to be associated; this address is that to which datagrams

are to be sent, and the only address from which datagrams

are to be received. If it is of type SOCK_STREAM, then this

call attempts to make a connection to another socket. The

other socket is specified by name which is an address in the

communications space of the socket. Each communications

space interprets the name parameter in its own way. Gen-

erally, stream sockets may successfully connect() only once;

datagram sockets may use connect() multiple times to change

their association. Datagram sockets may dissolve the asso-

ciation by connecting to an invalid address, such as a null

address.

RETURN VALUES

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS

EADDRINUSE - The address is already in use.

EADDRNOTAVAIL - The specified address is not available

on the remote machine.

EAFNOSUPPORT - Addresses in the specified address fam-

ily cannot be used with this socket.

148 Section B.1 AmiTCP/IP System Manual

EALREADY - The socket is non-blocking and a previ-

ous connection attempt has not yet been

completed.

EBADF - s is not a valid descriptor.

ECONNREFUSED - The attempt to connect was forcefully

rejected. The calling program should

CloseSocket() the socket descriptor, and

issue another socket() call to obtain a

new descriptor before attempting another

connect() call.

EINPROGRESS - The socket is non-blocking and the con-

nection cannot be completed immediately.

It is possible to select() for comple-

tion by selecting the socket for writ-

ing.

EINTR - The operation was interrupted by a break

signal.

EINVAL - namelen is not the size of a valid

address for the specified address fam-

ily.

EISCONN The socket is already connected.

ENETUNREACH - The network is not reachable from this

host.

ETIMEDOUT - Connection establishment timed out

without establishing a connection.

SEE ALSO

accept(), CloseSocket(), connect(), getsockname(), select(),

socket()

System Manual AmiTCP/IP Section B.1 149

B.1.5 Dup2Socket()

NAME

Dup2Socket - duplicate a socket descriptor

SYNOPSIS

newfd = Dup2Socket(fd1, fd2)

D0 D0 D1

long Dup2Socket(long, long);

DESCRIPTION

Dup2Socket() duplicates an existing socket descriptor.

the argument fd1 is small non-negative value that indexes

the socket on SocketBase descriptor table. The value must

be less than the size of the table, which is returned by

getdtablesize(). fd2 specifies the desired value of the new

descriptor. If descriptor fd2 is already in use, it is

first deallocated as if it were closed by CloseSocket(). If

the value if fd2 is -1, the new descriptor used and returned

is the lowest numbered descriptor that is not currently in

use by the SocketBase.

RETURN VALUES

Dup2Socket() returns a new descriptor on success. On failure

-1 is returned and errno is set to indicate the error.

ERRORS

EBADF fd1 or fd2 is not a valid active descriptor.

EMFILE Too many descriptors are active.

SEE ALSO

accept(), CloseSocket(), getdtablesize(), SetDtableSize(),

socket()

150 Section B.1 AmiTCP/IP System Manual

B.1.6 getpeername()

NAME

getpeername - get name of connected peer

SYNOPSIS

success = getpeername(s, name, namelen)

D0 D0 A0 A1

long getpeername(long, struct sockaddr *, long *);

FUNCTION

getpeername() returns the name of the peer connected to

socket s. The long pointed to by the namelen parameter

should be initialized to indicate the amount of space

pointed to by name. On return it contains the actual size

of the name returned (in bytes). The name is truncated if

the buffer provided is too small.

RETURN VALUE

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

EBADF - The argument s is not a valid descriptor.

ENOBUFS - Insufficient resources were available in the

system to perform the operation.

ENOTCONN - The socket is not connected.

SEE ALSO

accept(), bind(), getsockname(), socket()

System Manual AmiTCP/IP Section B.1 151

B.1.7 getsockname()

NAME

getsockname - get socket name

SYNOPSIS

success = getsockname(s, name, namelen)

D0 D0 A0 A1

long getsockname(long, struct sockaddr *, long *);

FUNCTION

getsockname() returns the current name for the specified

socket. The namelen parameter should be initialized to

indicate the amount of space pointed to by name. On return

it contains the actual size of the name returned (in bytes).

DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

EBADF s is not a valid descriptor.

ENOBUFS Insufficient resources were available in the

system to perform the operation.

SEE ALSO

bind(), getpeername(), socket()

152 Section B.1 AmiTCP/IP System Manual

B.1.8 getsockopt()

NAME

getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

success = getsockopt(s, level, optname, optval, optlen)

D0 D0 D1 D2 A0 A1

long getsockopt(long, long, long, caddr_t, long *);

success = setsockopt(s, level, optname, optval, optlen)

D0 D0 D1 D2 A0 D3

long setsockopt(long, long, long, caddr_t, long);

FUNCTION

getsockopt() and setsockopt() manipulate options associated

with a socket. Options may exist at multiple protocol lev-

els; they are always present at the uppermost ``socket''

level.

When manipulating socket options the level at which the

option resides and the name of the option must be specified.

To manipulate options at the ``socket'' level, level is

specified as SOL_SOCKET. To manipulate options at any other

level the protocol number of the appropriate protocol con-

trolling the option is supplied. For example, to indicate

that an option is to be interpreted by the TCP protocol,

level should be set to the protocol number of TCP.

The parameters optval and optlen are used to access option

values for setsockopt(). For getsockopt() they identify a

buffer in which the value for the requested option(s) are to

be returned. For getsockopt(), optlen is a value-result

parameter, initially containing the size of the buffer

pointed to by optval, and modified on return to indicate the

actual size of the value returned. If no option value is to

be supplied or returned, optval may be supplied as 0.

System Manual AmiTCP/IP Section B.1 153

optname and any specified options are passed uninterpreted

to the appropriate protocol module for interpretation. The

include file <sys/socket.h> contains definitions for

``socket'' level options, described below. Options at other

protocol levels vary in format and name.

Most socket-level options take an int parameter for optval.

For setsockopt(), the parameter should be non-zero to enable

a boolean option, or zero if the option is to be disabled.

SO_LINGER uses a struct linger parameter, defined in

<sys/socket.h>, which specifies the desired state of the

option and the linger interval (see below).

The following options are recognized at the socket level.

Except as noted, each may be examined with getsockopt() and

set with setsockopt().

SO_DEBUG - toggle recording of debugging

information

SO_REUSEADDR - toggle local address reuse

SO_KEEPALIVE - toggle keep connections alive

SO_DONTROUTE - toggle routing bypass for outgoing

messages

SO_LINGER - linger on close if data present

SO_BROADCAST - toggle permission to transmit

broadcast messages

SO_OOBINLINE - toggle reception of out-of-band

data in band

SO_SNDBUF - set buffer size for output

SO_RCVBUF - set buffer size for input

SO_TYPE - get the type of the socket (get

only)

SO_ERROR - get and clear error on the socket

(get only)

SO_DEBUG enables debugging in the underlying protocol

modules. SO_REUSEADDR indicates that the rules used in

validating addresses supplied in a bind() call should allow

reuse of local addresses. SO_KEEPALIVE enables the periodic

transmission of messages on a connected socket. Should the

connected party fail to respond to these messages, the con-

154 Section B.1 AmiTCP/IP System Manual

nection is considered broken. If the process is

waiting in select() when the connection is broken, select()

returns true for any read or write events selected for the

socket. SO_DONTROUTE indicates that outgoing messages

should bypass the standard routing facilities. Instead,

messages are directed to the appropriate network interface

according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are

queued on socket and a CloseSocket() is performed. If the

socket promises reliable delivery of data and SO_LINGER is

set, the system will block the process on the close

attempt until it is able to transmit the data or until it

decides it is unable to deliver the information (a timeout

period, in seconds, termed the linger interval, is specified

in the set- sockopt() call when SO_LINGER is requested). If

SO_LINGER is disabled and a CloseSocket() is issued, the

system will process the close in a manner that allows the

process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broad-

cast datagrams on the socket. Broadcast was a privileged

operation in earlier versions of the system. With protocols

that support out-of-band data, the SO_OOBINLINE option

requests that out-of-band data be placed in the normal data

input queue as received; it will then be accessible with

recv() or read() calls without the MSG_OOB flag. SO_SNDBUF

and SO_RCVBUF are options to adjust the normal buffer sizes

allocated for output and input buffers, respectively. The

buffer size may be increased for high-volume connections, or

may be decreased to limit the possible backlog of incoming

data. The system places an absolute limit on these values.

Finally, SO_TYPE and SO_ERROR are options used only with

getsockopt(). SO_TYPE returns the type of the socket, such

as SOCK_STREAM; it is useful for servers that inherit sock-

ets on startup. SO_ERROR returns any pending error on the

socket and clears the error status. It may be used to check

for asynchronous errors on connected datagram sockets or for

other asynchronous errors.

RETURN VALUES

0 - on success.

System Manual AmiTCP/IP Section B.1 155

-1 - on failure and set errno to indicate the error.

ERRORS

EBADF - s is not a valid descriptor.

ENOPROTOOPT - The option is unknown at the level indi-

cated.

SEE ALSO

IoctlSocket(), socket()

BUGS

Several of the socket options should be handled at lower

levels of the system.

156 Section B.1 AmiTCP/IP System Manual

B.1.9 IoctlSocket()

NAME

IoctlSocket - control sockets

SYNOPSIS

#include <sys/types.h>

#include <sys/ioctl.h>

value = IoctlSocket(fd, request, arg)

D0 D0 D1 A0

long IoctlSocket(long, long, caddr_t);

FUNCTION

IoctlSocket() performs a special function on the object referred

to by the open socket descriptor fd. Note: the setsockopt()

call (see getsockopt()) is the primary method for operating

on sockets as such, rather than on the underlying protocol

or network interface.

For most IoctlSocket() functions, arg is a pointer to data to

be used by the function or to be filled in by the function.

Other functions may ignore arg or may treat it directly as a

data item; they may, for example, be passed an int value.

The following requests are supported:

FIOASYNC The argument is a pointer to a long.

Set or clear asynchronous I/O. If the

value of that long is a 1 (one) the

descriptor is set for asynchronous I/O.

If the value of that long is a 0 (zero)

the descriptor is cleared for asynchro-

nous I/O.

FIOCLEX

FIONCLEX Ignored, no use for close-on-exec flag

in Amiga.

FIOGETOWN

System Manual AmiTCP/IP Section B.1 157

SIOCGPGRP The argument is pointer to struct Task*.

Set the value of that pointer to the

Task that is receiving SIGIO or SIGURG

signals for the socket referred to by

the descriptor passed to IoctlSocket().

FIONBIO The argument is a pointer to a long.

Set or clear non-blocking I/O. If the

value of that long is a 1 (one) the

descriptor is set for non-blocking I/O.

If the value of that long is a 0 (zero)

the descriptor is cleared for non-

blocking I/O.

FIONREAD The argument is a pointer to a long.

Set the value of that long to the number

of immediately readable characters from

the socket fd.

FIOSETOWN

SIOCSPGRP The argument is pointer to struct Task*,

pointer to the task that will subseq-

uently receive SIGIO or SIGURG signals

for the socket referred to by the

descriptor passed.

SIOCCATMARK The argument is a pointer to a long.

Set the value of that long to 1 if the

read pointer for the socket referred to

by the descriptor passed to

IoctlSocket() points to a mark in the

data stream for an out-of-band message,

and to 0 if it does not point to a mark.

RETURN VALUES

IoctlSocket() returns 0 on success for most requests. Some

specialized requests may return non-zero values on success; On

failure, IoctlSocket() returns -1 and sets errno to indicate

the error.

ERRORS

158 Section B.1 AmiTCP/IP System Manual

EBADF fd is not a valid descriptor.

EINVAL request or arg is not valid.

IoctlSocket() will also fail if the object on which the function

is being performed detects an error. In this case, an error

code specific to the object and the function will be

returned.

SEE ALSO

getsockopt(), SetSocketSignals(), setsockopt()

System Manual AmiTCP/IP Section B.1 159

B.1.10 listen()

NAME

listen - listen for connections on a socket

SYNOPSIS

success = listen(s, backlog)

D0 D0 D1

long listen(long, long);

FUNCTION

To accept connections, a socket is first created with

socket(), a backlog for incoming connections is specified

with listen() and then the connections are accepted with

accept(). The listen() call applies only to socket of

type SOCK_STREAM.

The backlog parameter defines the maximum length the queue

of pending connections may grow to. If a connection request

arrives with the queue full the client will receive an error

with an indication of ECONNREFUSED.

RETURN VALUES

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS

EBADF - s is not a valid descriptor.

EOPNOTSUPP - The socket is not of a type that sup-

ports listen().

SEE ALSO

accept(), connect(), socket()

BUGS

The backlog is currently limited (silently) to 5.

160 Section B.1 AmiTCP/IP System Manual

B.1.11 recv()

NAME

recv, recvfrom, - receive a message from a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

nbytes = recv(s, buf, len, flags)

D0 D0 A0 D1 D2

long recv(long, char *, long, long);

nbytes = recvfrom(s, buf, len, flags, from, fromlen)

D0 D0 A0 D1 D2 A1 A2

long recvfrom(long, char *, long, long,

struct sockaddr *, long *);

FUNCTION

s is a socket created with socket(). recv() and recvfrom(),

are used to receive messages from another socket. recv()

may be used only on a connected socket (see connect()),

while recvfrom() may be used to receive data on a socket

whether it is in a connected state or not.

If from is not a NULL pointer, the source address of the

message is filled in. fromlen is a value-result parameter,

initialized to the size of the buffer associated with from,

and modified on return to indicate the actual size of the

address stored there. The length of the message is

returned. If a message is too long to fit in the supplied

buffer, excess bytes may be discarded depending on the type

of socket the message is received from (see socket()).

If no messages are available at the socket, the receive call

waits for a message to arrive, unless the socket is non-

blocking (see IoctlSocket()) in which case -1 is returned

with the external variable errno set to EWOULDBLOCK.

The select() call may be used to determine when more data

arrive.

System Manual AmiTCP/IP Section B.1 161

The flags parameter is formed by ORing one or more of the

following:

MSG_OOB - Read any "out-of-band" data present on the

socket, rather than the regular "in-band"

data.

MSG_PEEK - "Peek" at the data present on the socket; the

data are returned, but not consumed, so that

a subsequent receive operation will see the

same data.

RETURN VALUES

These calls return the number of bytes received, or -1 if an

error occurred.

ERRORS

EBADF - s is an invalid descriptor.

EINTR - The operation was interrupted by a break

signal.

EWOULDBLOCK - The socket is marked non-blocking and

the requested operation would block.

SEE ALSO

connect(), getsockopt(), IoctlSocket(), select(), send(),

SetSocketSignals(), socket()

162 Section B.1 AmiTCP/IP System Manual

B.1.12 select()

NAME

select -- synchronous I/O multiplexing (stub/inline function)

WaitSelect -- select() with Amiga Wait() function.

SYNOPSIS

#include <sys/types.h>

#include <sys/time.h>

n = select (nfds, readfds, writefds, exceptfds, timeout)

long select(long, fd_set *, fd_set *, fd_set *,

struct timeval *);

n = WaitSelect (nfds, readfds, writefds, exceptfds, timeout,

D0 D0 A0 A1 A2 A3

sigmp)

D1

long WaitSelect(long, fd_set *, fd_set *, fd_set *,

struct timeval *, long *);

FD_SET (fd, &fdset)

FD_CLR (fd, &fdset)

FD_ISSET (fd, &fdset)

FD_ZERO (&fdset)

long fd;

fd_set fdset;

DESCRIPTION

select() examines the socket descriptor sets whose addresses

are passed in readfds, writefds, and exceptfds to see if

some of their descriptors are ready for reading, ready for

writing, or have an exceptional condition pending. nfds is

the number of bits to be checked in each bit mask that

represent a file descriptor; the descriptors from 0 through

(nfds - 1) in the descriptor sets are examined. On return,

select() replaces the given descriptor sets with subsets

consisting of those descriptors that are ready for the

requested operation. The total number of ready descriptors

in all the sets is returned.

System Manual AmiTCP/IP Section B.1 163

WaitSelect() also takes a signal mask which is waited during

normal select() operation. If one of these singals is recei-

ved, WaitSelect() returns and has re-set the signal mask

to return those signals that have arrived. Normal select()

return values are returned.

The descriptor sets are stored as bit fields in arrays of

integers. The following macros are provided for manipulat-

ing such descriptor sets: FD_ZERO (&fdset) initializes a

descriptor set fdset to the null set. FD_SET(fd, &fdset)

includes a particular descriptor fd in fdset. FD_CLR(fd,

&fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is

nonzero if fd is a member of fdset, zero otherwise. The

behavior of these macros is undefined if a descriptor value

is less than zero or greater than or equal to FD_SETSIZE,

which is normally at least equal to the maximum number of

descriptors supported by the system.

If timeout is not a NULL pointer, it specifies a maximum

interval to wait for the selection to complete. If timeout

is a NULL pointer, the select blocks indefinitely. To

effect a poll, the timeout argument should be a non-NULL

pointer, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as NULL

pointers if no descriptors are of interest.

Selecting true for reading on a socket descriptor upon which

a listen() call has been performed indicates that a subse-

quent accept() call on that descriptor will not block.

RETURN VALUES

select() returns a non-negative value on success. A positive

value indicates the number of ready descriptors in the

descriptor sets. 0 indicates that the time limit referred to

by timeout expired or that the operation was interrupted

either by a break signal or by arrival of a signal specified

in *sigmp. On failure, select() returns -1, sets errno to

indicate the error, and the descriptor sets are not changed.

ERRORS

EBADF - One of the descriptor sets specified an

164 Section B.1 AmiTCP/IP System Manual

invalid descriptor.

EINTR - one of the signals in SIGINTR mask (see Set-

SocketSignals()) is set and it was not

requested in WaitSelect() call.

EINVAL - A component of the pointed-to time limit is

outside the acceptable range: t_sec must be

between 0 and 10^8, inclusive. t_usec must be

greater than or equal to 0, and less than

10^6.

SEE ALSO

accept(), connect(), getdtablesize(), listen(), recv(),

send(), SetDTableSize(), SetSocketSignals()

NOTES

Under rare circumstances, select() may indicate that a

descriptor is ready for writing when in fact an attempt to

write would block. This can happen if system resources

necessary for a write are exhausted or otherwise unavail-

able. If an application deems it critical that writes to a

file descriptor not block, it should set the descriptor for

non-blocking I/O using the FIOASYNC request to IoctlSocket().

Default system limit for open socket descriptors is

currently 64. However, in order to accommodate programs

which might potentially use a larger number of open files

with select, it is possible to increase this size within a

program by providing a larger definition of FD_SETSIZE

before the inclusion of <sys/types.h> and use

SetDTableSize(FD_SETSIZE) call directly after OpenLibrary().

BUGS

select() should probably return the time remaining from the

original timeout, if any, by modifying the time value in

place. This may be implemented in future versions of the

system. Thus, it is unwise to assume that the timeout

pointer will be unmodified by the select() call.

System Manual AmiTCP/IP Section B.1 165

B.1.13 send()

NAME

send, sendto - send a message from a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

nbytes = send(s, msg, len, flags)

D0 D0 A0 D1 D2

int send(int, char *, int, int);

nbytes = sendto(s, msg, len, flags, to, tolen)

D0 D0 A0 D1 D2 A1 D3

int send(int, char *, int, int, struct sockaddr *, int);

FUNCTION

s is a socket created with socket(). send() and sendto() are

used to transmit a message to another socket. send() may be

used only when the socket is in a connected state, while

sendto() may be used at any time.

The address of the target is given by to with tolen specify-

ing its size. The length of the message is given by len. If

the message is too long to pass atomically through the

underlying protocol, then the error EMSGSIZE is returned, and

the message is not transmitted.

No indication of failure to deliver is implicit in a send().

Return values of -1 indicate some locally detected errors.

If no buffer space is available at the socket to hold the

message to be transmitted, then send() normally blocks,

unless the socket has been placed in non-blocking I/O mode.

The select() call may be used to determine when it is pos-

sible to send more data.

The flags parameter is formed by ORing one or more of the

following:

166 Section B.1 AmiTCP/IP System Manual

MSG_OOB - Send ``out-of-band'' data on sockets

that support this notion. The underly-

ing protocol must also support ``out-

of-band'' data. Currently, only

SOCK_STREAM sockets created in the

AF_INET address family support out-of-

band data.

MSG_DONTROUTE - The SO_DONTROUTE option is turned on for

the duration of the operation. This is

usually used only by diagnostic or rout-

ing programs.

RETURN VALUES

On success, these functions return the number of bytes sent.

On failure, they return -1 and set errno to indicate the

error.

ERRORS

EBADF - s is an invalid descriptor.

EINTR - The operation was interrupted by a break

signal.

EINVAL - len is not the size of a valid address

for the specified address family.

EMSGSIZE - The socket requires that message be sent

atomically, and the size of the message

to be sent made this impossible.

ENOBUFS - The system was unable to allocate an

internal buffer. The operation may

succeed when buffers become available.

ENOBUFS - The output queue for a network interface

was full. This generally indicates that

the interface has stopped sending, but

may be caused by transient congestion.

EWOULDBLOCK - The socket is marked non-blocking and

the requested operation would block.

System Manual AmiTCP/IP Section B.1 167

SEE ALSO

connect(), getsockopt(), recv(), select(), socket()

168 Section B.1 AmiTCP/IP System Manual

B.1.14 shutdown()

NAME

shutdown - shut down part of a full-duplex connection

SYNOPSIS

success = shutdown(s, how)

D0 D0 D1

long shutdown(long, long);

DESCRIPTION

The shutdown() call causes all or part of a full-duplex con-

nection on the socket associated with s to be shut down. If

how is 0, then further receives will be disallowed. If how

is 1, then further sends will be disallowed. If how is 2,

then further sends and receives will be disallowed.

RETURN VALUES

0 - on success.

-1 - on failure and sets errno to indicate the error.

ERRORS

EBADF - s is not a valid descriptor.

ENOTCONN - The specified socket is not connected.

SEE ALSO

connect(), socket()

BUGS

The how values should be defined constants.

System Manual AmiTCP/IP Section B.1 169

B.1.15 socket()

NAME

socket - create an endpoint for communication

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

s = socket(domain, type, protocol)

D0 D0 D1 D2

long socket(long, long, long);

FUNCTION

socket() creates an endpoint for communication and returns a

descriptor.

The domain parameter specifies a communications domain

within which communication will take place; this selects the

protocol family which should be used. The protocol family

generally is the same as the address family for the

addresses supplied in later operations on the socket. These

families are defined in the include file <sys/socket.h>.

The currently understood formats are

PF_INET - (ARPA Internet protocols)

The socket has the indicated type, which specifies the

semantics of communication. Currently defined types are:

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way

connection based byte streams. An out-of-band data

transmission mechanism may be supported. A SOCK_DGRAM

socket supports datagrams (connectionless, unreliable mes-

sages of a fixed (typically small) maximum length).

SOCK_RAW sockets provide access to internal network

interfaces.

170 Section B.1 AmiTCP/IP System Manual

The protocol specifies a particular protocol to be used with

the socket. Normally only a single protocol exists to sup-

port a particular socket type within a given protocol fam-

ily. However, it is possible that many protocols may exist,

in which case a particular protocol must be specified in

this manner. The protocol number to use is particular to

the "communication domain" in which communication is to take

place.

Sockets of type SOCK_STREAM are full-duplex byte streams,

similar to pipes. A stream socket must be in a connected

state before any data may be sent or received on it. A con-

nection to another socket is created with a connect() call.

Once connected, data may be transferred using send() and

recv() or their variant calls. When a session has been

completed a CloseSocket() may be performed. Out-of-band

data may also be transmitted as described in send() and

received as described in recv().

The communications protocols used to implement a SOCK_STREAM

insure that data is not lost or duplicated. If a piece of

data for which the peer protocol has buffer space cannot be

successfully transmitted within a reasonable length of time,

then the connection is considered broken and calls will

indicate an error with -1 returns and with ETIMEDOUT as the

specific error code (see Errno()). The protocols optionally

keep sockets "warm" by forcing transmissions roughly every

minute in the absence of other activity.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams

to correspondents named in send() calls. Datagrams are

generally received with recv(), which returns the next

datagram with its return address.

The operation of sockets is controlled by socket level

options. These options are defined in the file socket.h.

getsockopt() and setsockopt() are used to get and set

options, respectively.

RETURN VALUES

socket() returns a non-negative descriptor on success. On

failure, it returns -1 and sets errno to indicate the error.

System Manual AmiTCP/IP Section B.1 171

ERRORS

EACCES - Permission to create a socket of the

specified type and/or protocol is

denied.

EMFILE - The per-process descriptor table is

full.

ENOBUFS - Insufficient buffer space is available.

The socket cannot be created until suf-

ficient resources are freed.

EPROTONOSUPPORT - The protocol type or the specified pro-

tocol is not supported within this

domain.

EPROTOTYPE - The protocol is the wrong type for the

socket.

SEE ALSO

accept(), bind(), CloseSocket(), connect(), getsockname(),

getsockopt(), IoctlSocket(), listen(), recv(), select(),

send(), shutdown(), WaitSelect()

172 Section B.2 AmiTCP/IP System Manual

B.2 Other BSD Functions Related to Sockets

B.2.1 getdtablesize()

NAME

getdtablesize - get socket descriptor table size

SYNOPSIS

nfds = getdtablesize()

D0

long getdtablesize(void);

FUNCTION

Return value of maximum number of open socket descriptors.

Larger socket descriptor table can be allocated with

SetDTableSize() call.

SEE ALSO

SetDTableSize()

System Manual AmiTCP/IP Section B.2 173

B.2.2 Syslog()

NAME

syslog - write message to AmiTCP/IP log.

SYNOPSIS

#include <syslog.h>

void syslog(unsigned long level, char * format, ...);

Syslog(level, format, ap)

D0 A0 A1

VOID Syslog(unsigned long, const char *, va_list);

FUNCTION

Writes the message given as format string and arguments

(printf-style) both to the log file and to the console,

execpt if the level is LOG_EMERG, which is used by panic(),

in which case only the log file is used since panic()

generates a User Request.

The level is selected from an ordered list:

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be

corrected immediately, such as a

corrupted system database.

LOG_CRIT Critical conditions, such as hard

device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error con-

ditions, but that may require spe-

cial handling.

LOG_INFO Informational messages.

174 Section B.2 AmiTCP/IP System Manual

LOG_DEBUG Messages that contain information

normally of use only when debugging

a program.

INPUTS

Level - indicates the type of the message. The levels

are defined in sys/syslog.h and listed above.

format - This is a printf-style format string as defined

in exec.library/RawDoFmt().

arguments - as in printf().

ap - pointer to an array of arguments.

RESULT

Returns no value.

EXAMPLES

To log a message at priority LOG_INFO, it would make the

following call to syslog:

syslog(LOG_INFO, "Connection from host %s",

CallingHost);

NOTES

As Exec RawDoFmt() used to do formatting expects by default

short (16 bit long) integers you should use the `l'-modifier

when appopriate. See your compiler documentation about how

it passes arguments on a vararg list.

This function is callable from interrupts.

BUGS

Because there is a limited number of internal messages used

by the logging system, some log messages may get lost if a

high priority task or interrupt handler sends many messages

in succession. If this happens, the next log message tells

the fact.

SEE ALSO

System Manual AmiTCP/IP Section B.2 175

exec.library/RawDoFmt()

176 Section B.3 AmiTCP/IP System Manual

B.3 Network Data and Address Manipulation

B.3.1 inet addr()

NAME

inet_addr, inet_network, Inet_MakeAddr, Inet_LnaOf,

Inet_NetOf, Inet_NtoA - Internet address manipulation

inet_makeaddr, inet_lnaof, inet_netof,

inet_ntoa -- inline/stub functions to handle structure arguments

SYNOPSIS

#include <netinet/in.h>

addr = inet_addr(cp)

D0 A0

unsigned long inet_addr(char *);

net = inet_network(cp)

D0 A0

unsigned long inet_network(char *);

in_addr = Inet_MakeAddr(net, lna)

D0 D0 D1

unsigned long Inet_MakeAddr(long, long);

lna = Inet_LnaOf(in)

D0 D0

long Inet_LnaOf(unsigned long);

net = Inet_NetOf(in)

D0 D0

long Inet_NetOf(unsigned long);

addr = Inet_NtoA(in)

DO D0

System Manual AmiTCP/IP Section B.3 177

char * Inet_NtoA(unsigned long);

in_addr = inet_makeaddr(net, lna)

struct in_addr inet_makeaddr(long, long);

lna = inet_lnaof(in)

int inet_lnaof(struct in_addr);

net = inet_netof(in)

int inet_netof(struct in_addr);

addr = inet_ntoa(in)

char * inet_ntoa(struct in_addr);

IMPLEMENTATION NOTE

Return value of Inet_MakeAddr() and argument types of

Inet_LnaOf(), Inet_NetOf() and Inet_NtoA() are longs instead

of struct in_addr. The original behaviour is achieved by

using included stub functions (lower case function names)

which handle structure arguments.

DESCRIPTION

The routines inet_addr() and inet_network() each interpret

character strings representing numbers expressed in the

Internet standard `.' notation, returning numbers suitable

for use as Internet addresses and Internet network numbers,

respectively. The routine inet_makeaddr() takes an Internet

network number and a local network address and constructs an

Internet address from it. The routines inet_netof() and

inet_lnaof() break apart Internet host addresses, returning

the network number and local network address part, respec-

tively.

The routine inet_ntoa() returns a pointer to a string in the

base 256 notation ``d.d.d.d'' described below.

All Internet address are returned in network order (bytes

178 Section B.3 AmiTCP/IP System Manual

ordered from left to right). All network numbers and local

address parts are returned as machine format integer values.

INTERNET ADDRESSES

Values specified using the `.' notation take one of the

following forms:

a.b.c.d

a.b.c

a.b

a

When four parts are specified, each is interpreted as a byte

of data and assigned, from left to right, to the four bytes

of an Internet address. Note: when an Internet address is

viewed as a 32-bit integer quantity on little endian

systems, the bytes referred to above appear as d.c.b.a.

bytes are ordered from right to left.

When a three part address is specified, the last part is

interpreted as a 16-bit quantity and placed in the right

most two bytes of the network address. This makes the three

part address format convenient for specifying Class B net-

work addresses as "128.net.host".

When a two part address is supplied, the last part is inter-

preted as a 24-bit quantity and placed in the right most

three bytes of the network address. This makes the two part

address format convenient for specifying Class A network

addresses as "net.host".

When only one part is given, the value is stored directly in

the network address without any byte rearrangement.

All numbers supplied as ``parts'' in a `.' notation may be

decimal, octal, or hexadecimal, as specified in the C

language (that is, a leading 0x or 0X implies hexadecimal;

otherwise, a leading 0 implies octal; otherwise, the number

is interpreted as decimal).

RETURN VALUE

System Manual AmiTCP/IP Section B.3 179

The value -1 is returned by inet_addr() and inet_network()

for malformed requests.

BUGS

The problem of host byte ordering versus network byte order-

ing is confusing. A simple way to specify Class C network

addresses in a manner similar to that for Class B and Class

A is needed.

The return value from inet_ntoa() points to static buffer

which is overwritten in each inet_ntoa() call.

180 Section B.4 AmiTCP/IP System Manual

B.4 Network, Protocol and Service Queries

B.4.1 gethostbyname()

NAME

gethostbyname, gethostbyaddr - get network host entry

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

hostent = gethostbyname(name)

D0 A0

struct hostent *gethostbyname(char *);

hostent = gethostbyaddr(addr, len, type)

D0 A0 D0 D1

struct hostent *gethostbyaddr(caddr_t, LONG, LONG);

DESCRIPTION

gethostbyname() and gethostbyaddr() both return a pointer

to an object with the following structure containing the

data received from a name server or the broken-out fields

of a line in netdb configuration file. In the case of

gethostbyaddr(), addr is a pointer to the binary format

address of length len (not a character string) and type is

an address family as defined in <sys/socket.h>.

struct hostent {

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

};

The members of this structure are:

System Manual AmiTCP/IP Section B.4 181

h_name Official name of the host.

h_aliases A zero terminated array of alternate

names for the host.

h_addrtype The type of address being returned;

currently always AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A pointer to a list of network addresses

for the named host. Host addresses are

returned in network byte order.

DIAGNOSTICS

A NULL pointer is returned if no matching entry was found or

error occured.

BUGS

All information is contained in a static area so it must be

copied if it is to be saved. Only the Internet address for-

mat is currently understood.

SEE ALSO

AmiTCP/IP configuration

182 Section B.4 AmiTCP/IP System Manual

B.4.2 getnetbyname()

NAME

getnetbyname, getnetbyaddr - get network entry

SYNOPSIS

#include <netdb.h>

netent = getnetbyname(name)

D0 A0

struct netent *getnetbyname(char *);

netent = getnetbyaddr(net, type)

D0 D0 D1

struct netent *getnetbyaddr(long, long);

DESCRIPTION

getnetbyname(), and getnetbyaddr() both return a pointer to

an object with the following structure containing the

broken-out fields of a line in netdb configuration file.

struct netent {

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net number type */

long n_net; /* net number */

};

The members of this structure are:

n_name The official name of the network.

n_aliases A zero terminated list of alternate

names for the network.

n_addrtype The type of the network number returned;

currently only AF_INET.

n_net The network number. Network numbers are

returned in machine byte order.

System Manual AmiTCP/IP Section B.4 183

Network numbers are supplied in host order.

Type specifies the address type to use, currently only

AF_INET is supported.

DIAGNOSTICS

A NULL pointer is returned if no matching entry was found or

error occured.

BUGS

All information is contained in a static area so it must be

copied if it is to be saved.

Only Internet network numbers are currently understood.

SEE ALSO

AmiTCP/IP configuration

184 Section B.4 AmiTCP/IP System Manual

B.4.3 getprotobyname()

NAME

getprotobyname, getprotobynumber - get protocol entry

SYNOPSIS

#include <netdb.h>

protoent = getprotobyname(name)

D0 A0

struct protoent *getprotobyname(char *);

protoent = getprotobynumber(proto)

D0 D0

struct protoent *getprotobynumber(long);

DESCRIPTION

getprotobyname() and getprotobynumber() both return a pointer

to an object with the following structure containing the

broken-out fields of a line in netdb configuration file

struct protoent {

char *p_name; /* official name of protocol */

char **p_aliases; /* alias list */

int p_proto; /* protocol number */

};

The members of this structure are:

p_name The official name of the protocol.

p_aliases A zero terminated list of alternate

names for the protocol.

p_proto The protocol number.

DIAGNOSTICS

A NULL pointer is returned if no matching entry was found or

error occured.

BUGS

All information is contained in a static area so it must be

System Manual AmiTCP/IP Section B.4 185

copied if it is to be saved. Only the Internet protocols

are currently understood.

SEE ALSO

AmiTCP/IP configuration

186 Section B.4 AmiTCP/IP System Manual

B.4.4 getservbyname()

NAME

getservbyname, getservbyport - get service entry

SYNOPSIS

#include <netdb.h>

servent = getservbyname(name, proto)

D0 A0 A1

struct servent *getservbyname(char *, char *)

servent = getservbyport(port, proto)

D0 D0 A0

struct servent *getservbyport(long, char *);

DESCRIPTION

getservbyname() and getservbyport() both return a pointer to

an object with the following structure containing the

broken-out fields of a line in netdb configuration file.

struct servent {

char *s_name; /* official name of service */

char **s_aliases; /* alias list */

int s_port; /* port service resides at */

char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.

s_aliases A zero terminated list of alternate

names for the service.

s_port The port number at which the ser-

vice resides. Port numbers are

returned in network short byte

order.

s_proto The name of the protocol to use

when contacting the service.

The proto argument specifies the protocol for which to the

sercive is to use. It is a normal C string, e.g. "tcp" or

System Manual AmiTCP/IP Section B.4 187

"udp".

DIAGNOSTICS

A NULL pointer is returned if no matching entry was found or

error occured.

BUGS

All information is contained in a static area so it must be

copied if it is to be saved. Expecting port numbers to fit

in a 32 bit quantity is probably naive.

SEE ALSO

AmiTCP/IP configuration

188 Section B.5 AmiTCP/IP System Manual

B.5 AmiTCP/IP Speci�c Extensions

B.5.1 Errno()

NAME

Errno - get error value after unsuccessful function call

SYNOPSIS

errno = Errno()

D0

LONG Errno(VOID);

FUNCTION

When some function in socket library return an error

condition value, they also set a specific error value. This

error value can be extracted by this function.

RESULT

Error value indicating the error on last failure of some

socket function call.

NOTES

Return value of Errno() is not changed after successful

function so so it cannot be used to determine success of any

function call of this library. Also, another function call

to this library may change the return value of Errno() so

use it right after error occurred.

SEE ALSO

SetErrnoPtr()

System Manual AmiTCP/IP Section B.5 189

B.5.2 ObtainSocket()

NAME

ObtainSocket - get a socket from AmiTCP/IP socket list

SYNOPSIS

s = ObtainSocket(id, domain, type, protocol)

D0 D0 D1 D2 D3

LONG ObtainSocket(LONG, LONG, LONG, LONG);

FUNCTION

When one task wants to give a socket to an another one, it

releases it (with a key value) to a special socket list held

by AmiTCP/IP. This function requests that socket and

receives it if id and other parameters match.

INPUTS

id - a key value given by the socket donator.

domain - see documentation of socket().

type - see documentation of socket().

protocol - see documentation of socket().

RESULT

Non negative socket descriptor on success. On failure, -1 is

returned and the errno is set to indicate the error.

ERRORS

EMFILE - The per-process descriptor table is

full.

EPROTONOSUPPORT - The protocol type or the specified pro-

tocol is not supported within this

domain.

EPROTOTYPE - The protocol is the wrong type for the

socket.

EWOULDBLOCK - Matching socket is not found.

SEE ALSO

ReleaseCopyOfSocket(), ReleaseSocket(), socket()

190 Section B.5 AmiTCP/IP System Manual

B.5.3 ReleaseCopyOfSocket()

NAME

ReleaseCopyOfSocket - copy given socket to AmiTCP/IP socket list.

SYNOPSIS

id = ReleaseCopyOfSocket(fd, id)

D0 D0 D1

LONG ReleaseCopyOfSocket(LONG, LONG);

FUNCTION

Make a new reference to a given socket (pointed by its descriptor)

and release it to the socket list held by AmiTCP/IP.

INPUTS

fd - descriptor of the socket to release.

id - the key value to identify use of this socket. It can be

unique or not, depending on its value. If id value is

between 0 and 65535, inclusively, it is considered

nonunique and it can be used as a port number, for

example. If id is greater than 65535 and less than

2^31) it must be unique in currently held sockets in

AmiTCP/IP socket list, Otherwise an error will be

returned and socket is not released. If id ==

UNIQUE_ID (defined in <sys/socket.h>) an unique id will

be generated.

RESULT

id - -1 in case of error and the key value of the socket put

in the list. Most useful when an unique id is generated

by this routine.

ERRORS

EINVAL - Requested unique id is already used.

ENOMEM - Needed memory couldn't be allocated.

NOTE

The socket descriptor is not deallocated.

SEE ALSO

System Manual AmiTCP/IP Section B.5 191

ObtainSocket(), ReleaseSocket()

192 Section B.5 AmiTCP/IP System Manual

B.5.4 ReleaseSocket()

NAME

ReleaseSocket - release given socket to AmiTCP/IP socket list.

SYNOPSIS

id = ReleaseSocket(fd, id)

D0 D0 D1

LONG ReleaseSocket(LONG, LONG);

FUNCTION

Release the reference of given socket (via its descriptor)

and move the socket to the socket list held by AmiTCP/IP.

The socket descriptor is deallocated in this procedure.

INPUTS

fd - descriptor of the socket to release.

id - the key value to identify use of this socket. It can be

unique or not, depending on its value. If id value is

between 0 and 65535, inclusively, it is considered

nonunique and it can be used as a port number, for

example. If id is greater than 65535 and less than

2^31) it must be unique in currently held sockets in

AmiTCP/IP socket list, Otherwise an error will be

returned and socket is not released. If id ==

UNIQUE_ID (defined in <sys/socket.h>) an unique id will

be generated.

RESULT

id - -1 in case of error and the key value of the socket put

in the list. Most useful when an unique id is generated

by this routine.

ERRORS

EINVAL - Requested unique id is already used.

ENOMEM - Needed memory couldn't be allocated.

SEE ALSO

ObtainSocket(), ReleaseCopyOfSocket()

System Manual AmiTCP/IP Section B.5 193

B.5.5 SetDTableSize()

NAME

SetDTableSize - set socket descriptor table size of the base

SYNOPSIS

newsize = SetDTableSize(size)

D0 D0

LONG SetDTableSize(UWORD);

FUNCTION

This function increases the descriptor table size inside

library base so more sockets can be open at the same time.

INPUT

size - the new size of the desctiptor table.

RESULT

newsize - the new size of the descriptor table. Note that

this can be less than requested if an error occured.

WARNING

If the size of fd_set is not adjusted to store the increased

space needed for new socket descriptors some other memory

will be spilled. Change the value of FD_SETSIZE before

including any socket include files and don't increase

descriptor table to greater than the new value of

FD_SETSIZE.

SEE ALSO

getdtablesize(), select()

194 Section B.5 AmiTCP/IP System Manual

B.5.6 SetErrnoPtr()

NAME

SetErrnoPtr - set new place where the error value will be written

SYNOPSIS

SetErrnoPtr(ptr, size)

A0 D0

VOID SetErrnoPtr(VOID *, UBYTE);

FUNCTION

This functions allows caller to redirect error variable inside

scope of caller task. Usually this is used to make task's

global variable errno as error variable.

INPUTS

ptr - pointer to error variable that is to be modified on

every error condition on this library function.

size - size of the error variable.

EXAMPLE

#include <errno.h>

struct Library;

struct Library * SocketBase = NULL;

int main(void)

{

...

if ((SocketBase = OpenLibrary("bsdsocket.library", 2))

!= NULL) {

SetErrnoPtr(&errno, sizeof(errno));

...

}

}

NOTES

Be sure that this new error variable exists until library base

is finally closed or SetErrnoPtr() is called again for another

variable.

SEE ALSO

System Manual AmiTCP/IP Section B.5 195

Errno()

196 Section B.5 AmiTCP/IP System Manual

B.5.7 SetSocketSignals()

NAME

SetSocketSignals - inform AmiTCP/IP of INTR, IO and URG signals

SYNOPSIS

SetSocketSignals(sigintrmask, sigiomask, sigurgmask)

D0 D1 D2

VOID SetSocketSignals(ULONG, ULONG, ULONG);

FUNCTION

SetSocketSignals() tells the AmiTCP/IP which signal masks

corresponds UNIX SIGINT, SIGIO and SIGURG signals to be used

in this implementation. sigintrmask mask is used to

determine which Amiga signals interrupt blocking library

calls. sigio- and sigurgmasks are sent when asynchronous

notification of socket events is done and when out-of-band

data arrives, respectively.

Note that the supplied values write over old ones. If this

function is used and CTRL-C is still wanted to interrupt the

calls (the default behaviour), the value BREAKF_CTRL_C must

be explicitly given.

SEE ALSO

IoctlSocket(), recv(), send(), WaitSelect()

Appendix C

AmiTCP/IP Network Link Library

This appendix describes the functions located in the net.lib.

Table of Contents

autoinit : 198

autoinitd : 200

charRead : 201

gethostname : 203

lineRead : 205

197

198 Section C.1 AmiTCP/IP System Manual

C.1 net.lib Functions

C.1.1 autoinit

NAME

autoinit - SAS C Autoinitialization Functions

SYNOPSIS

_STIopenSockets()

void _STIopenSockets(void)

_STDcloseSockets()

void _STDcloseSockets(void)

FUNCTION

These functions open and close the bsdsocket.library at the

startup and exit of the program, respectively. For a

program to use these functions, it must be linked with

netlib:net.lib.

If the library can be opened, the _STIopenSockets() calls

bsdsocket.library function SetErrnoPtr() to tell the

library the address and the size of the errno variable of

the calling program.

NOTES

_STIopenSockets() also checks that the system version is at

least 37. It puts up a requester if the bsdsocket.library

is not found or is of wrong version.

The autoinitialization and autotermination functions are

features specific to the SAS C6. However, these functions

can be used with other (ANSI) C compilers, too. Example

follows:

* at start of main() *\

atexit(_STDcloseSockets);

_STDopenSockets();

BUGS

SEE ALSO

System Manual AmiTCP/IP Section C.1 199

bsdsocket.library/SetErrnoPtr(),

SAS/C 6 User's Guide p. 145 for details of

autoinitialization and autotermination functions.

200 Section C.1 AmiTCP/IP System Manual

C.1.2 autoinitd

NAME

autoinitd - SAS C Autoinitialization Functions for Daemons

SYNOPSIS

void _STIopenSockets(void);

void _STDcloseSockets(void);

long server_socket;

DESCRIPTION

These are SASC autoinitialization functions for internet daemons

started by inetd, Internet super-server. Upon startup, the server

socket is obtained with ObtainSocket() library call. If successful,

the socket id is stored to the global variable server_socket. If the

socket is not obtainable, the server_socket contains value -1.

If the server_socket is not valid, the server may try to accept() a

new connection and act as a stand-alone server.

RESULT

server_socket - positive socket id for success or -1 for failure.

NOTES

_STIopenSockets() also checks that the system version is at

least 37. It puts up a requester if the bsdsocket.library

is not found or is of wrong version.

The autoinitialization and autotermination functions are

features specific to the SAS C6. However, these functions

can be used with other (ANSI) C compilers, too. Example

follows:

* at start of main() *\

atexit(_STDcloseSockets);

_STDopenSockets();

AUTHOR

Jarno Rajahalme, Pekka Pessi,

the AmiTCP/IP Group <amitcp-group@hut.fi>,

Helsinki University of Technology, Finland.

SEE ALSO

serveraccept(), netutil/inetd

System Manual AmiTCP/IP Section C.1 201

C.1.3 charRead

NAME

charRead -- read characters from socket one by one.

SYNOPSIS

initCharRead(rc, fd)

void initCharRead(struct CharRead *, int);

character = charRead(rc)

int charRead(struct CharRead *);

DESCRIPTION

charRead is a macro package which return characters one by one

from given socket input stream. The socket where data is to be read

is set by calling initCharRead(): rc is the pointer to charread

structure previously allocated. fd is the (socket) descriptor where

reading is to be done.

charRead() returns the next character from input stream or one of

the following:

RC_DO_SELECT (-3) - read input buffer is returned. Do select

before next call if you don't want charread

to block.

RC_EOF (-2) - end-of-file condition has occurred.

RC_ERROR (-1) - there has been an error while filling new

charread buffer. Check the value of Errno()

NOTE

Always use variable of type int to store return value from charRead()

since the numeric value of characters returned may vary between

0 -255 (or even greater). As you may know, -3 equals 253 if of type

unsigned char.

EXAMPLE

/*

* This piece of code shows how to use charread with select()

*/

202 Section C.1 AmiTCP/IP System Manual

#include <sys/types.h>

#include <sys/socket.h>

#include <charread.h>

main_loop(int sock)

{

struct CharRead rc;

fd_set readfds;

int c;

initCharRead(&rc, sock);

FD_ZERO(&readfds);

while(1) {

FD_SET(sock, &readfds);

if (select(sock + 1. &readfds, NULL, NULL, NULL)) < 0) {

perror("select");

break;

}

if (FD_ISSET(sock, &readfds)) {

while((c = charRead(&rc)) >= 0)

handle_next_input_character(c);

if (c == RC_EOF)

break;

if (c == RC_ERROR) {

perror("charRead");

break;

}

}

}

}

PORTABILITY

The source file charread.h should be able to be used in

UNIX programs as is.

AUTHORS

Tomi Ollila,

the AmiTCP/IP Group <amitcp-group@hut.fi>,

SEE ALSO

lineRead(), bsdsocket.library/recv()

System Manual AmiTCP/IP Section C.1 203

C.1.4 gethostname

NAME

gethostname -- get the name of the host

SYNOPSIS

error = gethostname(name, namelen);

int gethostname(char *, int);

FUNCTION

Get the name of the host to the buffer name of length namelen.

The name is taken from the environment variable "HOSTNAME"

where it SHOULD reside.

INPUTS

name - Pointer to the buffer where the name should be

stored.

namelen - Length of the buffer name.

RESULT

error - 0 on success, -1 in case of an error. The global

variable errno will be set to indicate the error as

follows:

ENOENT - The environment variable "HOSTNAME" is not

found.

EXAMPLE

char hostname[MAXHOSTNAMELEN];

int error;

error = gethostname(hostname, sizeof(hostname));

if (error < 0)

exit(10);

printf("My name is \"%s\".\n", hostname);

NOTES

This function is included for source compatibility with Unix

systems.

The ENOENT errno value is AmiTCP/IP addition.

BUGS

Unlike the Unix version, this version assures that the

204 Section C.1 AmiTCP/IP System Manual

resulting string is always NULL-terminated.

SEE ALSO

getenv()

System Manual AmiTCP/IP Section C.1 205

C.1.5 lineRead

NAME

lineRead -- read newline terminated strings from socket

SYNOPSIS

initLineRead(rl, fd, lftype, bufsize)

void initLineRead(struct LineRead *, int, int, int);

length = lineRead(rl)

int lineread(struct LineRead *);

DESCRIPTION

lineRead() reads newline terminated strings from given descriptor

very efficiently. All the options needed are set by calling

initLineRead(): rl is the pointer to lineread structure previously

allocated. fd is the (socket) descriptor where reading is to be

done. lftype can have following 3 values:

RL_LFNOTREQ - Newline terminated strings are returned unless

there is no newlines left in currently buffered

input. In this case remaining buffer is returned.

RL_LFREQLF - If there is no newlines left in currently buffered

input the remaining input data is copied at the

start of buffer. Caller is informed that next

call will fill the buffer (and it may block).

Lines are always returned with newline at the end

unless the string is longer than whole buffer.

RL_LFREQNUL - Like LF_REQLF, but remaining newline is removed.

Note here that lenght is one longer that actual

string length since line that has only one

newline at the end would return length as 0

which indigate string incomplete condition.

bufsize is used to tell lineread how big the receive buffer is.

always put RL_BUFSIZE here since that value is used to determine

the memory allocated for the buffer. This option is given to you

so you may decide to use different buffer size than the default

1024.

206 Section C.1 AmiTCP/IP System Manual

lineRead() returns the newline terminated string in rl_line field

of lineread structure. Return values of lineRead() are:

1 - RL_BUFSIZE - normal length of returned string.

0 - If zero is returned just after select(),

end-of-file condition has occurred.

Otherwise string is not completed yet.

Make sure you call select() (or use non-

blocking IO) if you don't want next call

to block.

-1 - if rl_Line field of lineread structure

is NULL, it indicates error condition.

If rl_Line points to start of string

buffer, input string has been longer

than buffer. In this case rl_Line points

to zero terminated string of length

RL_BUFSIZE.

You may modify the zero terminated string returned by lineRead() in

any way, but memory around the string is private lineread memory.

EXAMPLE

/*

* The following code shows how to use lineread with select()

*/

#ifdef USE_LOW_MEMORY_BUFFER

#define RL_BUFSIZE 256

#endif

#include <sys/types.h>

#ifdef AMIGA

#include <bsdsocket.h>

#endif

#include <lineread.h>

#define NULL 0

...

main_loop(int sock)

{

struct LineRead * rl;

System Manual AmiTCP/IP Section C.1 207

int length;

fd_set reafdfs;

if (rl = (struct LineRead *)AllocMem(sizeof (*rl), 0)) {

initLineRead(rl, sock, LF_REQLF, RL_BUFSIZE);

FD_ZERO(&readfds);

while(1) {

FD_SET(sock, &readfds);

if (select(sock + 1, &readfds, NULL, NULL, NULL)) < 0) {

perror("select");

break;

}

if (FD_ISSET(sock, &readfds))

if ((length = lineRead(rl)) == 0) /* EOF */

break;

do {

if (length > 0)

write(1, rl->rl_Line, length); /* stdout. write() for */

/* speed demonstration */

else { /* length == -1 */

if (rl->rl_Line == NULL); {

perror("lineRead");

break;

}

else {

fprintf(stderr, "lineread input buffer overflow!\n");

write(1, rl->rl_Line, RL_BUFSIZE);

write(1, "\n", 1);

}

}

} while ((length = lineRead(rl)) != 0); /* 0 -> do select() */

}

FreeMem(rl, sizeof (*rl);

}

else

fprintf("AllocMem: Out Of memory\n");

}

PORTABILITY

The source modules lineread.c and lineread.h should compile

in UNIX machines as is.

208 Section C.1 AmiTCP/IP System Manual

AUTHORS

Tomi Ollila,

the AmiTCP/IP Group <amitcp-group@hut.fi>,

SEE ALSO

readChar(), bsdsocket.library/recv()

Appendix D

Protocols and Network Interfaces

The AutoDoc �le protocol.doc contains on-line manual pages for protocols and network

interfaces.

Table of Contents

arp : 210

icmp : 214

if : 216

inet : 219

ip : 222

lo : 224

routing : 225

tcp : 227

udp : 230

209

210 Section D.1 AmiTCP/IP System Manual

D.1 Protocols and Network Interfaces

D.1.1 arp

NAME

arp - Address Resolution Protocol

CONFIG

Any SANA-II device driver using ARP

SYNOPSIS

#include <sys/socket.h>

#include <net/if_arp.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION

ARP is a protocol used to dynamically map between Internet

Protocol (IP) and hardware addresses. It can be used by most

the SANA-II network interface drivers. The current

implementation supports only Internet Protocol (and is tested

only with Ethernet). However, ARP is not limited to only that

combination.

ARP caches IP-to-hardware address mappings. When an interface

requests a mapping for an address not in the cache, ARP queues

the message which requires the mapping and broadcasts a

message on the associated network requesting the address

mapping. If a response is provided, the new mapping is cached

and any pending message is transmitted. ARP will queue at most

one packet while waiting for a mapping request to be responded

to; only the most recently transmitted packet is kept.

The address mapping caches are separate for each interface. The

amount of mappings in the cache may be specified with an

IoctlSocket() request.

To facilitate communications with systems which do not use ARP,

IoctlSocket() requests are provided to enter and delete entries

in the IP-to-Ethernet tables.

USAGE

#include <sys/ioctl.h>

#include <sys/socket.h>

System Manual AmiTCP/IP Section D.1 211

#include <net/if.h>

#include <net/if_arp.h>

struct arpreq arpreq;

IoctlSocket(s, SIOCSARP, (caddr_t)&arpreq);

IoctlSocket(s, SIOCGARP, (caddr_t)&arpreq);

IoctlSocket(s, SIOCDARP, (caddr_t)&arpreq);

These three IoctlSocket()s take the same structure as an argument.

SIOCSARP sets an ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP

deletes an ARP entry. These IoctlSocket() requests may be applied to

any socket descriptor (s). The arpreq structure contains:

/* Maximum number of octets in protocol/hw address */

#define MAXADDRARP 16

/*

* ARP ioctl request.

*/

struct arpreq {

struct sockaddr arp_pa; /* protocol address */

struct { /* hardware address */

u_char sa_len; /* actual length + 2 */

u_char sa_family;

char sa_data[MAXADDRARP];

} arp_ha;

int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry */

The interface whose ARP table is manipulated is specified by

arp_pa sockaddr. The address family for the arp_pa sockaddr

must be AF_INET; for the arp_ha sockaddr it must be AF_UNSPEC.

The length of arp_ha must match the length of used hardware

address. Maximum length for the hardware address is MAXADDRARP

bytes. The only flag bits which may be written are ATF_PERM

and ATF_PUBL. ATF_PERM makes the entry permanent if the

IoctlSocket() call succeeds. ATF_PUBL specifies that the ARP

212 Section D.1 AmiTCP/IP System Manual

code should respond to ARP requests for the indicated host

coming from other machines. This allows a host to act as an

ARP server which may be useful in convincing an ARP-only

machine to talk to a non-ARP machine.

UNSUPPORTED IN AmiTCP/IP

AmiTCP/IP EXTENSIONS

There is an extension to the standard BSD4.4 ARP ioctl interface to

access the contents of the whole ARP mapping cache. (In the BSD4.4

the static ARP table is accessed via the /dev/kmem.) The SIOCGARPT

ioctl takes the following arptabreq structure as an argument:

/*

* An AmiTCP/IP specific ARP table ioctl request

*/

struct arptabreq {

struct arpreq atr_arpreq; /* To identify the interface */

long atr_size; /* # of elements in atr_table */

long atr_inuse; /* # of elements in use */

struct arpreq *atr_table;

};

The atr_arpreq specifies the used interface. The hardware address

for the interface is returned in the arp_ha field of atr_arpreq

structure.

The SIOCGARPT ioctl reads at most atr_size entries from the cache

into the user supplied buffer atr_table, if it is not NULL. Actual

amount of returned entries is returned in atr_size. The current

amount of cached mappings is returned in the atr_inuse.

The SIOCGARPT ioctl has following usage:

struct arpreq cache[N];

struct arptabreq arptab = { N, 0, cache };

IoctlSocket(s, SIOCGARPT, (caddr_t)&arptabreq);

DIAGNOSTICS

ARP watches passively for hosts impersonating the local host

(that is, a host which responds to an ARP mapping request

for the local host's address).

"duplicate IP address a.b.c.d!!"

System Manual AmiTCP/IP Section D.1 213

"sent from hardware address: %x:%x:...:%x:%x"

ARP has discovered another host on the local network

which responds to mapping requests for its own Internet

address.

BUGS

The ARP is tested only with Ethernet. Other network hardware may

require special ifconfig configuration.

SEE ALSO

inet, netutil/arp, netutil/ifconfig, <net/if_arp.h>

Plummer, Dave, ``An Ethernet Address Resolution Protocol

-or- Converting Network Protocol Addresses to 48.bit Ether-

net Addresses for Transmission on Ethernet Hardware,'' RFC

826, Network Information Center, SRI International, Menlo

Park, Calif., November 1982. (Sun 800-1059-10)

214 Section D.1 AmiTCP/IP System Manual

D.1.2 icmp

NAME

icmp - Internet Control Message Protocol

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

int

socket(AF_INET, SOCK_RAW, proto)

DESCRIPTION

ICMP is the error and control message protocol used by IP and the

Internet protocol family. It may be accessed through a ``raw

socket'' for network monitoring and diagnostic functions. The proto

parameter to the socket call to create an ICMP socket is obtained

from getprotobyname(). ICMP sockets are connectionless, and are

normally used with the sendto() and recvfrom() calls, though the

connect() call may also be used to fix the destination for future

packets (in which case the recv() and send() socket library calls

may be used).

Outgoing packets automatically have an IP header prepended to them

(based on the destination address). Incoming packets are received

with the IP header and options intact.

DIAGNOSTICS

A socket operation may fail with one of the following errors

returned:

[EISCONN] when trying to establish a connection on a socket

which already has one, or when trying to send a

datagram with the destination address specified and

the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination

address is specified, and the socket hasn't been

connected;

[ENOBUFS] when the system runs out of memory for an internal

data structure;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a

network address for which no network interface

System Manual AmiTCP/IP Section D.1 215

exists.

SEE ALSO

bsdsocket.library/send(), bsdsocket.library/recv(), inet, ip

HISTORY

The icmp protocol is originally from 4.3BSD.

216 Section D.1 AmiTCP/IP System Manual

D.1.3 if

NAME

if - Network Interface to SANA-II devices

DESCRIPTION

Each network interface in the AmiTCP/IP corresponds to a path

through which messages may be sent and received. A network

interface usually has a SANA-II device driver associated with it,

though the loopback interface, "lo", do not. The network interface

in the AmiTCP/IP (sana_softc) is superset of the BSD Unix network

interface.

When the network interface is first time referenced, AmiTCP/IP tries

to open the corresponding SANA-II device driver. If successful, a

software interface to the SANA-II device is created. The "network/"

prefix is added to the SANA-II device name, if needed. Once the

interface has acquired its address, it is expected to install a

routing table entry so that messages can be routed through it.

The SANA-II interfaces must be configured before they will allow

traffic to flow through them. It is done after the interface is

assigned a protocol address with a SIOCSIFADDR ioctl. Some

interfaces may use the protocol address or a part of it as their

hardware address. On interfaces where the network-link layer address

mapping is static, only the network number is taken from the ioctl;

the remainder is found in a hardware specific manner. On interfaces

which provide dynamic network-link layer address mapping facilities

(for example, Ethernets or Arcnets using ARP), the entire address

specified in the ioctl is used.

The following ioctl calls may be used to manipulate network

interfaces. Unless specified otherwise, the request takes an ifreq

structure as its parameter. This structure has the form

struct ifreq {

char ifr_name[IFNAMSIZ]; /* interface name (eg. "slip.device/0")*/

union {

struct sockaddr ifru_addr;

struct sockaddr ifru_dstaddr;

short ifru_flags;

} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* end of p-to-p link */

#define ifr_flags ifr_ifru.ifru_flags /* flags */

System Manual AmiTCP/IP Section D.1 217

};

SIOCSIFADDR Set interface address. Following the address

assignment, the ``initialization'' routine for

the interface is called.

SIOCGIFADDR Get interface address.

SIOCSIFDSTADDR Set point to point address for interface.

SIOCGIFDSTADDR Get point to point address for interface.

SIOCSIFFLAGS Set interface flags field. If the interface is

marked down, any processes currently routing

packets through the interface are notified.

SIOCGIFFLAGS Get interface flags.

SIOCGIFCONF Get interface configuration list. This request

takes an ifconf structure (see below) as a

value-result parameter. The ifc_len field should be

initially set to the size of the buffer pointed to

by ifc_buf. On return it will contain the length,

in bytes, of the configuration list.

/*

* Structure used in SIOCGIFCONF request.

* Used to retrieve interface configuration

* for machine (useful for programs which

* must know all networks accessible).

*/

struct ifconf {

int ifc_len; /* size of associated buffer */

union {

caddr_t ifcu_buf;

struct ifreq *ifcu_req;

} ifc_ifcu;

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

};

UNSUPPORTED IN AmiTCP/IP

These standard BSD ioctl codes are not currently supported:

218 Section D.1 AmiTCP/IP System Manual

SIOCADDMULTI Enable a multicast address for the interface.

SIOCDELMULTI Disable a previously set multicast address.

SIOCSPROMISC Toggle promiscuous mode.

AmiTCP/IP EXTENSIONS

The following ioctls are used to configure protocol and hardware

specific properties of a sana_softc interface. They are used in the

AmiTCP/IP only.

SIOCSSANATAGS Set SANA-II specific properties with a tag list.

SIOCGSANATAGS Get SANA-II specific properties into a

wiretype_parameters structure and a user tag list.

struct wiretype_parameters

{

ULONG wiretype; /* the wiretype of the interface */

WORD flags; /* iff_flags */

struct TagItem *tags; /* tag list user provides */

};

SEE ALSO

arp, lo, netutil/arp, netutil/ifconfig, <sys/ioctl.h>, <net/if.h>,

<net/sana2tags.h>

System Manual AmiTCP/IP Section D.1 219

D.1.4 inet

NAME

inet - Internet protocol family

SYNOPSIS

#include <sys/types.h>

#include <netinet/in.h>

DESCRIPTION

The Internet protocol family implements a collection of protocols

which are centered around the Internet Protocol (IP) and which share

a common address format. The Internet family provides protocol

support for the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types.

PROTOCOLS

The Internet protocol family is comprised of the Internet Protocol

(IP), the Address Resolution Protocol (ARP), the Internet Control

Message Protocol (ICMP), the Transmission Control Protocol (TCP),

and the User Datagram Protocol (UDP).

TCP is used to support the SOCK_STREAM abstraction while UDP is used

to support the SOCK_DGRAM abstraction; (SEE ALSO tcp, SEE ALSO udp).

A raw interface to IP is available by creating an Internet socket of

type SOCK_RAW; (SEE ALSO ip). ICMP is used by the kernel to handle

and report errors in protocol processing. It is also accessible to

user programs; (SEE ALSO icmp). ARP is used to translate 32-bit IP

addresses into varying length hardware addresses; (SEE ALSO arp).

The 32-bit IP address is divided into network number and host number

parts. It is frequency-encoded; the most significant bit is zero in

Class A addresses, in which the high-order 8 bits are the network

number. Class B addresses have their high order two bits set to 10

and use the highorder 16 bits as the network number field. Class C

addresses have a 24-bit network number part of which the high order

three bits are 110. Sites with a cluster of local networks may

chose to use a single network number for the cluster; this is done

by using subnet addressing. The local (host) portion of the address

is further subdivided into subnet number and host number parts.

Within a subnet, each subnet appears to be an individual network;

externally, the entire cluster appears to be a single, uniform

network requiring only a single routing entry. Subnet addressing is

enabled and examined by the following ioctl commands on a datagram

socket in the Internet domain; they have the same form as the

SIOCIFADDR (SEE ALSO if) command.

220 Section D.1 AmiTCP/IP System Manual

SIOCSIFNETMASK Set interface network mask. The network mask

defines the network part of the address; if it

contains more of the address than the address

type would indicate, then subnets are in use.

SIOCGIFNETMASK Get interface network mask.

ADDRESSING

IP addresses are four byte quantities, stored in network byte order

(the native Amiga byte order)

Sockets in the Internet protocol family use the following

addressing structure:

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Functions in bsdsocket.library are provided to manipulate structures

of this form.

The sin_addr field of the sockaddr_in structure specifies a local or

remote IP address. Each network interface has its own unique IP

address. The special value INADDR_ANY may be used in this field to

effect "wildcard" matching. Given in a bind() call, this value

leaves the local IP address of the socket unspecified, so that the

socket will receive connections or messages directed at any of the

valid IP addresses of the system. This can prove useful when a

process neither knows nor cares what the local IP address is or when

a process wishes to receive requests using all of its network

interfaces. The sockaddr_in structure given in the bind() call must

specify an in_addr value of either IPADDR_ANY or one of the system's

valid IP addresses. Requests to bind any other address will elicit

the error EADDRNOTAVAIL. When a connect() call is made for a socket

that has a wildcard local address, the system sets the sin_addr

field of the socket to the IP address of the network interface that

the packets for that connection are routed via.

The sin_port field of the sockaddr_in structure specifies a port

number used by TCP or UDP. The local port address specified in a

bind() call is restricted to be greater than IPPORT_RESERVED

(defined in <netinet/in.h>) unless the creating process is running

System Manual AmiTCP/IP Section D.1 221

as the super-user, providing a space of protected port numbers. In

addition, the local port address must not be in use by any socket of

same address family and type. Requests to bind sockets to port

numbers being used by other sockets return the error EADDRINUSE. If

the local port address is specified as 0, then the system picks a

unique port address greater than IPPORT_RESERVED. A unique local

port address is also picked when a socket which is not bound is used

in a connect() or send() call. This allows programs which do not

care which local port number is used to set up TCP connections by

sim- ply calling socket() and then connect(), and to send UDP

datagrams with a socket() call followed by a send() call.

Although this implementation restricts sockets to unique local port

numbers, TCP allows multiple simultaneous connections involving the

same local port number so long as the remote IP addresses or port

numbers are different for each connection. Programs may explicitly

override the socket restriction by setting the SO_REUSEADDR socket

option with setsockopt (see getsockopt()).

SEE ALSO

bsdsocket.library/bind(), bsdsocket.library/connect(),

bsdsocket.library/getsockopt(), bsdsocket.library/IoctlSocket(),

bsdsocket.library/send(), bsdsocket.library/socket(),

bsdsocket.library/gethostent(), bsdsocket.library/getnetent(),

bsdsocket.library/getprotoent(), bsdsocket.library/getservent(),

bsdsocket.library/inet_addr(), arp, icmp, ip, tcp, udp

Network Information Center, DDN Protocol Handbook (3 vols.),

Network Information Center, SRI International, Menlo Park,

Calif., 1985.

A AmiTCP/IP Interprocess Communication Primer

WARNING

The Internet protocol support is subject to change as the Internet

protocols develop. Users should not depend on details of the

current implementation, but rather the services exported.

222 Section D.1 AmiTCP/IP System Manual

D.1.5 ip

NAME

ip - Internet Protocol

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

int

socket(AF_INET, SOCK_RAW, proto)

DESCRIPTION

IP is the transport layer protocol used by the Internet protocol

family. Options may be set at the IP level when using higher-level

protocols that are based on IP (such as TCP and UDP). It may also be

accessed through a ``raw socket'' when developing new protocols, or

special purpose applica- tions.

A single generic option is supported at the IP level, IP_OPTIONS,

that may be used to provide IP options to be transmitted in the IP

header of each outgoing packet. Options are set with setsockopt()

and examined with getsockopt(). The format of IP options to be sent

is that specified by the IP protocol specification, with one

exception: the list of addresses for Source Route options must

include the first-hop gateway at the beginning of the list of

gateways. The first-hop gateway address will be extracted from the

option list and the size adjusted accordingly before use. IP

options may be used with any socket type in the Internet family.

Raw IP sockets are connectionless, and are normally used with the

sendto and recvfrom calls, though the connect() call may also be

used to fix the destination for future packets (in which case the

recv() and send() system calls may be used).

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing

packets, and only incoming packets destined for that protocol are

received. If proto is non-zero, that protocol number will be used

on outgoing packets and to filter incoming packets.

Outgoing packets automatically have an IP header prepended to them

(based on the destination address and the protocol number the socket

is created with). Incoming packets are received with IP header and

options intact.

System Manual AmiTCP/IP Section D.1 223

DIAGNOSTICS

A socket operation may fail with one of the following errors

returned:

[EISCONN] when trying to establish a connection on a socket

which already has one, or when trying to send a

datagram with the destination address specified and

the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination

address is specified, and the socket hasn't been

connected;

[ENOBUFS] when the system runs out of memory for an internal

data structure;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a

network address for which no network interface

exists.

The following errors specific to IP may occur when setting or

getting IP options:

[EINVAL] An unknown socket option name was given.

[EINVAL] The IP option field was improperly formed; an

option field was shorter than the minimum value or

longer than the option buffer provided.

SEE ALSO

bsdsocket.library/getsockopt(), bsdsocket.library/send(),

bsdsocket.library/recv(), icmp, inet

HISTORY

The ip protocol appeared in 4.2BSD.

224 Section D.1 AmiTCP/IP System Manual

D.1.6 lo

NAME

lo - Software Loopback Network Interface

SYNOPSIS

pseudo-device

loop

DESCRIPTION

The loop interface is a software loopback mechanism which may be

used for performance analysis, software testing, and/or local

communication. There is no SANA-II interface associated with lo.

As with other network interfaces, the loopback interface must have

network addresses assigned for each address family with which it is

to be used. These addresses may be set or changed with the

SIOCSIFADDR ioctl. The loopback interface should be the last

interface configured, as protocols may use the order of

configuration as an indication of priority. The loopback should

never be configured first unless no hardware interfaces exist.

DIAGNOSTICS

"lo%d: can't handle af%d."

The interface was handed a message with ad- dresses formatted in an

unsuitable address family; the packet was dropped.

SEE ALSO

inet, if, netutil/ifconfig

BUGS

Older BSD Unix systems enabled the loopback interface

automatically, using a nonstandard Internet address (127.1). Use

of that address is now discouraged; a reserved host address for the

local network should be used instead.

System Manual AmiTCP/IP Section D.1 225

D.1.7 routing

NAME

routing - system supporting for local network packet routing

DESCRIPTION

The network facilities provided general packet routing,

leaving routing table maintenance to applications processes.

A simple set of data structures comprise a ``routing table''

used in selecting the appropriate network interface when

transmitting packets. This table contains a single entry for

each route to a specific network or host. A user process, the

routing daemon, maintains this data base with the aid of two

socket specific ioctl commands, SIOCADDRT and SIOCDELRT.

The commands allow the addition and deletion of a single

routing table entry, respectively. Routing table

manipulations may only be carried out by super-user.

A routing table entry has the following form, as defined in

<net/route.h>:

struct rtentry {

u_long rt_hash;

struct sockaddr rt_dst;

struct sockaddr rt_gateway;

short rt_flags;

short rt_refcnt;

u_long rt_use;

struct ifnet *rt_ifp;

};

with rt_flags defined from:

#define RTF_UP 0x1 /* route usable */

#define RTF_GATEWAY 0x2 /* destination is a gateway */

#define RTF_HOST 0x4 /* host entry (net otherwise) */

Routing table entries come in three flavors: for a specific

host, for all hosts on a specific network, for any destination

not matched by entries of the first two types (a wildcard

route). When the system is booted, each network interface

autoconfigured installs a routing table entry when it wishes

to have packets sent through it. Normally the interface

specifies the route through it is a ``direct'' connection to

the destination host or network. If the route is direct, the

transport layer of a protocol family usually requests the

packet be sent to the same host specified in the packet.

226 Section D.1 AmiTCP/IP System Manual

Otherwise, the interface may be requested to address the

packet to an entity different from the eventual recipient

(that is, the packet is forwarded).

Routing table entries installed by a user process may not

specify the hash, reference count, use, or interface fields;

these are filled in by the routing routines. If a route is in

use when it is deleted (rt_refcnt is non-zero), the resources

associated with it will not be reclaimed until all references

to it are removed.

The routing code returns EEXIST if requested to duplicate an

existing entry, ESRCH if requested to delete a non-existent

entry, or ENOBUFS if insufficient resources were available to

install a new route.

The rt_use field contains the number of packets sent along the

route. This value is used to select among multiple routes to

the same destination. When multiple routes to the same

destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination

address value. Wildcard routes are used only when the system

fails to find a route to the destination host and network.

The combination of wildcard routes and routing redirects can

provide an economical mechanism for routing traffic.

SEE ALSO

bsdsocket.library/IoctlSocket(), netutil/route

System Manual AmiTCP/IP Section D.1 227

D.1.8 tcp

NAME

tcp - Internet Transmission Control Protocol

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

int

socket(AF_INET, SOCK_STREAM, 0)

DESCRIPTION

The TCP protocol provides reliable, flow-controlled, two-way

transmission of data. It is a byte-stream protocol used to support

the SOCK_STREAM abstraction. TCP uses the standard Internet address

format and, in addition, provides a per-host collection of ``port

addresses''. Thus, each address is composed of an Internet address

specifying the host and network, with a specific TCP port on the

host identifying the peer entity.

Sockets utilizing the tcp protocol are either ``active'' or

``passive''. Active sockets initiate connections to passive

sockets. By default TCP sockets are created active; to create a

passive socket the listen() bsdsocket.library function call must be

used after binding the socket with the bind() bsdsocket.library

function call. Only passive sockets may use the accept() call to

accept incoming connections. Only active sockets may use the

connect() call to initiate connections.

Passive sockets may ``underspecify'' their location to match

incoming connection requests from multiple networks. This

technique, termed ``wildcard addressing'', allows a single server to

provide service to clients on multiple networks. To create a socket

which listens on all networks, the Internet address INADDR_ANY must

be bound. The TCP port may still be specified at this time; if the

port is not specified the bsdsocket.library function will assign

one. Once a connection has been established the socket's address is

fixed by the peer entity's location. The address assigned the

socket is the address associated with the network interface through

which packets are being transmitted and received. Normally this

address corresponds to the peer entity's network.

TCP supports one socket option which is set with setsockopt() and

tested with getsockopt(). Under most circumstances, TCP sends data

228 Section D.1 AmiTCP/IP System Manual

when it is presented; when outstanding data has not yet been

acknowledged, it gathers small amounts of output to be sent in a

single packet once an acknowledgement is received. For a small

number of clients, such as X Window System functions that

send a stream of mouse events which receive no replies, this

packetization may cause significant delays. Therefore, TCP provides

a boolean option, TCP_NODELAY (from <netinet/tcp.h>, to defeat this

algorithm. The option level for the setsockopt call is the protocol

number for TCP, available from getprotobyname().

Options at the IP transport level may be used with TCP; SEE ALSO ip.

Incoming connection requests that are source-routed are noted, and

the reverse source route is used in responding.

DIAGNOSTICS

A socket operation may fail with one of the following errors

returned:

[EISCONN] when trying to establish a connection on a socket

which already has one;

[ENOBUFS] when the AmiTCP/IP runs out of memory for an internal

data structure;

[ETIMEDOUT] when a connection was dropped due to excessive

retransmissions;

[ECONNRESET] when the remote peer forces the connection to be

closed;

[ECONNREFUSED] when the remote peer actively refuses connection

establishment (usually because no process is

listening to the port);

[EADDRINUSE] when an attempt is made to create a socket with a

port which has already been allocated;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a

network address for which no network interface

exists.

SEE ALSO

bsdsocket.library/getsockopt(), bsdsocket.library/socket(),

bsdsocket.library/bind(), bsdsocket.library/listen(),

bsdsocket.library/accept(), bsdsocket.library/connect(), inet,

System Manual AmiTCP/IP Section D.1 229

ip, <sys/socket.h>, <netinet/tcp.h>, <netinet/in.h>

HISTORY

The tcp protocol stack appeared in 4.2BSD.

230 Section D.1 AmiTCP/IP System Manual

D.1.9 udp

NAME

udp - Internet User Datagram Protocol

SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

int

socket(AF_INET, SOCK_DGRAM, 0)

DESCRIPTION

UDP is a simple, unreliable datagram protocol which is used to

support the SOCK_DGRAM abstraction for the Internet protocol family.

UDP sockets are connectionless, and are normally used with the

sendto() and recvfrom() calls, though the connect() call may also be

used to fix the destination for future packets (in which case the

recv() and send() function calls may be used).

UDP address formats are identical to those used by TCP. In

particular UDP provides a port identifier in addition to the normal

Internet address format. Note that the UDP port space is separate

from the TCP port space (i.e. a UDP port may not be ``connected'' to

a TCP port). In addition broadcast packets may be sent (assuming the

underlying network supports this) by using a reserved ``broadcast

address''; this address is network interface dependent.

Options at the IP transport level may be used with UDP; SEE ALSO ip.

DIAGNOSTICS

A socket operation may fail with one of the following errors

returned:

[EISCONN] when trying to establish a connection on a socket

which already has one, or when trying to send a

datagram with the destination address specified and

the socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination

address is specified, and the socket hasn't been

connected;

[ENOBUFS] when the system runs out of memory for an

internal data structure;

System Manual AmiTCP/IP Section D.1 231

[EADDRINUSE] when an attempt is made to create a socket with a

port which has already been allocated;

[EADDRNOTAVAIL] when an attempt is made to create a socket with a

network address for which no network interface

exists.

SEE ALSO

bsdsocket.library/getsockopt(), bsdsocket.library/recv(),

bsdsocket.library/send(), bsdsocket.library/socket(), inet, ip

HISTORY

The udp protocol appeared in 4.2BSD.

232 Section D.1 AmiTCP/IP System Manual

